Art of Problem Solving
During AMC 10A/12A testing, the AoPS Wiki is in read-only mode and no edits can be made.

2008 AMC 10B Problems/Problem 21: Difference between revisions

Nathan wailes (talk | contribs)
No edit summary
Song2sons (talk | contribs)
Line 5: Line 5:


==Solution==
==Solution==
For the first man, there are <math>10</math> possible seats. For each subsequent man, there are <math>4</math>, <math>3</math>, <math>2</math>, and <math>1</math> possible seats. After the men are seated, there are only two possible arrangements for the five women. The answer is <math>10\cdot 4\cdot 3\cdot 2\cdot 1\cdot 2 = \boxed{480}</math>.
For the first man, there are <math>10</math> possible seats. For each subsequent man, there are <math>4</math>, <math>3</math>, <math>2</math>, and <math>1</math> possible seats. After the men are seated, there are only two possible arrangements for the five women. The answer is <math>10\cdot 4\cdot 3\cdot 2\cdot 1\cdot 2 = \boxed{480(C)}</math>.


==See also==
==See also==
{{AMC10 box|year=2008|ab=B|num-b=20|num-a=22}}
{{AMC10 box|year=2008|ab=B|num-b=20|num-a=22}}
{{MAA Notice}}
{{MAA Notice}}

Revision as of 19:51, 22 January 2016

Problem

Ten chairs are evenly spaced around a round table and numbered clockwise from $1$ through $10$. Five married couples are to sit in the chairs with men and women alternating, and no one is to sit either next to or across from his/her spouse. How many seating arrangements are possible?

$\mathrm{(A)}\ 240\qquad\mathrm{(B)}\ 360\qquad\mathrm{(C)}\ 480\qquad\mathrm{(D)}\ 540\qquad\mathrm{(E)}\ 720$

Solution

For the first man, there are $10$ possible seats. For each subsequent man, there are $4$, $3$, $2$, and $1$ possible seats. After the men are seated, there are only two possible arrangements for the five women. The answer is $10\cdot 4\cdot 3\cdot 2\cdot 1\cdot 2 = \boxed{480(C)}$.

See also

2008 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination