Art of Problem Solving

2013 AIME II Problems/Problem 12: Difference between revisions

Mathgeek2006 (talk | contribs)
Line 5: Line 5:
==Solution==
==Solution==


Every cubic in real coefficients has to have either three real roots or one real and two complex roots which are conjugates. This follows from [[Vieta's formulas]]. Factorise the polynomial <math>(z-r)(z-\omega)(z-\omega^*)</math>, where <math>\omega^*</math> is the complex conjugate of omega. We know that <math>r</math> is the real root which must be <math>-20</math>, <math>20</math>, <math>-13</math>, or <math>13</math>, and it doesn't matter which. <math>|\omega|=|\omega^*|=20 \ \text{or}\ 13</math>. Let <math>\omega=\alpha+i\beta</math>. Viète tells us that <math>a=-(r+\omega+\omega^*</math>), but <math>\omega+\omega^*=2\Re{(\omega)}</math> (i.e., adding the conjugates cancels the imaginary part). a the quadratic coefficient must be an integer so <math>2\Re{(\omega)}</math> is some integer. <math>|\omega|=|\omega^*|=</math>20 or 13 so you have a bound on <math>\Re{(\omega)}</math>: either <math>-13\leq\Re{(\omega)}\leq 13</math> or <math>-20\leq\Re{(\omega)}\leq 20</math>. Don't forget zero! We're not double counting the numbers between <math>-13</math> and <math>13</math> here because there's an imaginary part too -- <math>\sqrt{\alpha^2+\beta^2}=|\omega|</math>, and what you get when you solve for beta will depend on what the magnitude was.
Every cubic in real coefficients has to have either three real roots or one real and two nonreal roots which are conjugates. This follows from [[Vieta's formulas]].  
You have the magnitude so <math>\Re{(\omega)}</math> determines <math>\omega</math> totally (you can solve for the imaginary part) and <math>\omega</math> determines <math>\omega^*</math>.  
 
Now just count: 4 possibilities for the real root times [(52+1) possibilities if <math>|\omega|=13</math> plus (80+1) possibilities if <math>|\omega|=20</math> = 536. But this is not all, we also have <math>{4\choose{3}}=4</math> ways of constructing a totally real polynomial (all real roots), which gives you <math>\boxed{540}</math>.
*Case 1:  <math>f(z)=(z-r)(z-\omega)(z-\omega^*)</math>, where <math>r\in \mathbb{R}</math>,  <math>\omega</math> is nonreal, and <math>\omega^*</math> is the complex conjugate of omega (note that we may assume that <math>\Im(\omega)>0</math>).
 
The real root <math>r</math> must be one of <math>-20</math>, <math>20</math>, <math>-13</math>, or <math>13</math>. By Viète's formulas, <math>a=-(r+\omega+\omega^*)</math>, <math>b=|\omega|^2+r(\omega+\omega^*)</math>, and <math>c=-r|\omega|^2</math>. But <math>\omega+\omega^*=2\Re{(\omega)}</math> (i.e., adding the conjugates cancels the imaginary part). Therefore, to make <math>a</math> is an integer, <math>2\Re{(\omega)}</math> must be an integer. Conversely, if <math>\omega+\omega^*=2\Re{(\omega)}</math> is an integer, then <math>a,b,</math> and <math>c</math> are clearly integers. Therefore <math>2\Re{(\omega)}\in \mathbb{Z}</math> is equivalent to the desired property. Let <math>\omega=\alpha+i\beta</math>.
 
*Subcase 1.1: <math>|\omega|=20</math>.
In this case, <math>\omega</math> lies on a circle of radius <math>20</math> in the complex plane. As <math>\omega</math> is nonreal, we see that <math>\beta\ne 0</math>.  Hence <math>-20<\Re{(\omega)}< 20</math>, or rather <math>-40<2\Re{(\omega)}< 40</math>. We count <math>79</math> integers in this interval, each of which corresponds to a unique complex number on the circle of radius <math>20</math> with positive imaginary part.
 
*Subcase 1.2: <math>|\omega|=13</math>.
In this case, <math>\omega</math> lies on a circle of radius <math>13</math> in the complex plane. As <math>\omega</math> is nonreal, we see that <math>\beta\ne 0</math>.  Hence <math>-13<\Re{(\omega)}< 13</math>, or rather <math>-26<2\Re{(\omega)}< 26</math>. We count <math>51</math> integers in this interval, each of which corresponds to a unique complex number on the circle of radius <math>13</math> with positive imaginary part.
 
Therefore, there are <math>79+51=130</math> choices for <math>\omega</math>. We also have <math>4</math> choices for <math>r</math>, hence there are <math>4\cdot 130=520</math> total polynomials in this case.
 
*Case 2: <math>f(z)=(z-r_1)(z-r_2)(z-r_3)</math>, where <math>r_1,r_2,r_3</math> are all real.
In this case, there are four possible real roots, namely <math>\pm 13, \pm20</math>. Let <math>p</math> be the number of times that <math>13</math> appears among <math>r_1,r_2,r_3</math>, and define <math>q,r,s</math> similarly for <math>-13,20</math>, and <math>-20</math>, respectively. Then <math>a+b+c+d=3</math> because there are three roots. We wish to find the number of ways to choose nonnegative integers <math>a,b,c,d</math> that satisfy that equation. By balls and urns, these can be chosen in <math>\binom{6}{3}=20</math> ways.
 
Therefore, there are a total of <math>520+20=\boxed{540}</math> polynomials with the desired property.


==See Also==
==See Also==
{{AIME box|year=2013|n=II|num-b=11|num-a=13}}
{{AIME box|year=2013|n=II|num-b=11|num-a=13}}
{{MAA Notice}}
{{MAA Notice}}

Revision as of 23:29, 17 January 2016

Problem 12

Let $S$ be the set of all polynomials of the form $z^3 + az^2 + bz + c$, where $a$, $b$, and $c$ are integers. Find the number of polynomials in $S$ such that each of its roots $z$ satisfies either $|z| = 20$ or $|z| = 13$.

Solution

Every cubic in real coefficients has to have either three real roots or one real and two nonreal roots which are conjugates. This follows from Vieta's formulas.

  • Case 1: $f(z)=(z-r)(z-\omega)(z-\omega^*)$, where $r\in \mathbb{R}$, $\omega$ is nonreal, and $\omega^*$ is the complex conjugate of omega (note that we may assume that $\Im(\omega)>0$).

The real root $r$ must be one of $-20$, $20$, $-13$, or $13$. By Viète's formulas, $a=-(r+\omega+\omega^*)$, $b=|\omega|^2+r(\omega+\omega^*)$, and $c=-r|\omega|^2$. But $\omega+\omega^*=2\Re{(\omega)}$ (i.e., adding the conjugates cancels the imaginary part). Therefore, to make $a$ is an integer, $2\Re{(\omega)}$ must be an integer. Conversely, if $\omega+\omega^*=2\Re{(\omega)}$ is an integer, then $a,b,$ and $c$ are clearly integers. Therefore $2\Re{(\omega)}\in \mathbb{Z}$ is equivalent to the desired property. Let $\omega=\alpha+i\beta$.

  • Subcase 1.1: $|\omega|=20$.

In this case, $\omega$ lies on a circle of radius $20$ in the complex plane. As $\omega$ is nonreal, we see that $\beta\ne 0$. Hence $-20<\Re{(\omega)}< 20$, or rather $-40<2\Re{(\omega)}< 40$. We count $79$ integers in this interval, each of which corresponds to a unique complex number on the circle of radius $20$ with positive imaginary part.

  • Subcase 1.2: $|\omega|=13$.

In this case, $\omega$ lies on a circle of radius $13$ in the complex plane. As $\omega$ is nonreal, we see that $\beta\ne 0$. Hence $-13<\Re{(\omega)}< 13$, or rather $-26<2\Re{(\omega)}< 26$. We count $51$ integers in this interval, each of which corresponds to a unique complex number on the circle of radius $13$ with positive imaginary part.

Therefore, there are $79+51=130$ choices for $\omega$. We also have $4$ choices for $r$, hence there are $4\cdot 130=520$ total polynomials in this case.

  • Case 2: $f(z)=(z-r_1)(z-r_2)(z-r_3)$, where $r_1,r_2,r_3$ are all real.

In this case, there are four possible real roots, namely $\pm 13, \pm20$. Let $p$ be the number of times that $13$ appears among $r_1,r_2,r_3$, and define $q,r,s$ similarly for $-13,20$, and $-20$, respectively. Then $a+b+c+d=3$ because there are three roots. We wish to find the number of ways to choose nonnegative integers $a,b,c,d$ that satisfy that equation. By balls and urns, these can be chosen in $\binom{6}{3}=20$ ways.

Therefore, there are a total of $520+20=\boxed{540}$ polynomials with the desired property.

See Also

2013 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing