2003 AMC 10B Problems/Problem 20: Difference between revisions
| Line 3: | Line 3: | ||
==Problem== | ==Problem== | ||
In rectangle <math>ABCD, AB=5</math> and <math>BC=3</math>. Points <math>F</math> and <math>G</math> are on <math>\overline{CD}</math> so that <math>DF=1</math> and <math>GC=2</math>. Lines <math>AF</math> and <math>BG</math> intersect at <math>E</math>. Find the area of <math>\triangle AEB</math>. | In rectangle <math>ABCD, AB=5</math> and <math>BC=3</math>. Points <math>F</math> and <math>G</math> are on <math>\overline{CD}</math> so that <math>DF=1</math> and <math>GC=2</math>. Lines <math>AF</math> and <math>BG</math> intersect at <math>E</math>. Find the area of <math>\triangle AEB</math>. | ||
<center><asy> | |||
unitsize(8mm); | |||
defaultpen(linewidth(.8pt)+fontsize(10pt)); | |||
dotfactor=4; | |||
pair A=(0,0), B=(5,0), C=(5,3), D=(0,3); | |||
pair F=(1,3), G=(3,3); | |||
pair E=(5/3,5); | |||
draw(A--B--C--D--cycle); | |||
draw(A--E); | |||
draw(B--E); | |||
pair[] ps={A,B,C,D,E,F,G}; dot(ps); | |||
label("$A$",A,SW); | |||
label("$B$",B,SE); | |||
label("$C$",C,NE); | |||
label("$D$",D,NW); | |||
label("$E$",E,N); | |||
label("$F$",F,SE); | |||
label("$G$",G,SW); | |||
label("$1$",midpoint(D--F),N); | |||
label("$2$",midpoint(G--C),N); | |||
label("$5$",midpoint(A--B),S); | |||
label("$3$",midpoint(A--D),W); | |||
</asy></center> | |||
<math>\textbf{(A) } 10 \qquad\textbf{(B) } \frac{21}{2} \qquad\textbf{(C) } 12 \qquad\textbf{(D) } \frac{25}{2} \qquad\textbf{(E) } 15</math> | <math>\textbf{(A) } 10 \qquad\textbf{(B) } \frac{21}{2} \qquad\textbf{(C) } 12 \qquad\textbf{(D) } \frac{25}{2} \qquad\textbf{(E) } 15</math> | ||
Revision as of 12:03, 3 January 2016
- The following problem is from both the 2003 AMC 12B #14 and 2003 AMC 10B #20, so both problems redirect to this page.
Problem
In rectangle
and
. Points
and
are on
so that
and
. Lines
and
intersect at
. Find the area of
.
![[asy] unitsize(8mm); defaultpen(linewidth(.8pt)+fontsize(10pt)); dotfactor=4; pair A=(0,0), B=(5,0), C=(5,3), D=(0,3); pair F=(1,3), G=(3,3); pair E=(5/3,5); draw(A--B--C--D--cycle); draw(A--E); draw(B--E); pair[] ps={A,B,C,D,E,F,G}; dot(ps); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,NE); label("$D$",D,NW); label("$E$",E,N); label("$F$",F,SE); label("$G$",G,SW); label("$1$",midpoint(D--F),N); label("$2$",midpoint(G--C),N); label("$5$",midpoint(A--B),S); label("$3$",midpoint(A--D),W); [/asy]](http://latex.artofproblemsolving.com/1/a/c/1ac3fc6b18ce26a1ce9b9a1e0e9c2c73bed94a30.png)
Solution
![[asy] unitsize(8mm); defaultpen(linewidth(.8pt)+fontsize(10pt)); dotfactor=4; pair A=(0,0), B=(5,0), C=(5,3), D=(0,3); pair F=(1,3), G=(3,3); pair E=(5/3,5); draw(A--B--C--D--cycle); draw(A--E); draw(B--E); pair[] ps={A,B,C,D,E,F,G}; dot(ps); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,NE); label("$D$",D,NW); label("$E$",E,N); label("$F$",F,SE); label("$G$",G,SW); label("$1$",midpoint(D--F),N); label("$2$",midpoint(G--C),N); label("$5$",midpoint(A--B),S); label("$3$",midpoint(A--D),W); [/asy]](http://latex.artofproblemsolving.com/1/a/c/1ac3fc6b18ce26a1ce9b9a1e0e9c2c73bed94a30.png)
because
The ratio of
to
is
since
and
from subtraction. If we let
be the height of
The height is
so the area of
is
.
See Also
| 2003 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 13 |
Followed by Problem 15 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
| 2003 AMC 10B (Problems • Answer Key • Resources) | ||
| Preceded by Problem 19 |
Followed by Problem 21 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing