2013 USAMO Problems/Problem 1: Difference between revisions
No edit summary |
|||
| Line 109: | Line 109: | ||
Now, it follows that (now not using directed angles) | Now, it follows that (now not using directed angles) | ||
<cmath>\frac{XY}{YZ} = \frac{\frac{XY}{\sin \angle{XRY}}}{\frac{YZ}{\sin \angle{XQZ}}} = \frac{\frac{RY}{\sin \angle{RXY}}}{\frac{QZ}{\sin \angle{QXZ}}} = \frac{BP}{PC}</cmath> | <cmath>\frac{XY}{YZ} = \frac{\frac{XY}{\sin \angle{XRY}}}{\frac{YZ}{\sin \angle{XQZ}}} = \frac{\frac{RY}{\sin \angle{RXY}}}{\frac{QZ}{\sin \angle{QXZ}}} = \frac{BP}{PC}</cmath> | ||
using the facts that <math>ARY</math> and <math>APB</math>, <math>AQZ</math> and <math>APC</math> are similar triangles, and that <math>\frac{RA}{\sin \angle{RXA}} = \frac{QA}{\sin \angle{QXA}</math> equals twice the circumradius of the circumcircle of <math>AQR</math>. | using the facts that <math>ARY</math> and <math>APB</math>, <math>AQZ</math> and <math>APC</math> are similar triangles, and that <math>\frac{RA}{\sin \angle{RXA}} = \frac{QA}{\sin \angle{QXA}}</math> equals twice the circumradius of the circumcircle of <math>AQR</math>. | ||
{{MAA Notice}} | {{MAA Notice}} | ||
Revision as of 18:26, 20 May 2015
Problem
In triangle
, points
lie on sides
respectively. Let
,
,
denote the circumcircles of triangles
,
,
, respectively. Given the fact that segment
intersects
,
,
again at
respectively, prove that
Solution 1
In this solution, all lengths and angles are directed.
Firstly, it is easy to see by that
concur at a point
. Let
meet
again at
and
, respectively. Then by Power of a Point, we have
Thusly
But we claim that
. Indeed,
and
Therefore,
. Analogously we find that
and we are done.
courtesy v_enhance
Solution 2
Diagram Refer to the Diagram link.
By Miquel's Theorem, there exists a point at which
intersect. We denote this point by
Now, we angle chase:
![]()
![]()
![]()
![]()
In addition, we have
![]()
![]()
![]()
![]()
![]()
![]()
Now, by the Ratio Lemma, we have
![]()
(by the Law of Sines in
)![]()
![]()
(by the Law of Sines in
)
by the Ratio Lemma.
The proof is complete.
Solution 3
Use directed angles modulo
.
Lemma.
Proof.
Now, it follows that (now not using directed angles)
using the facts that
and
,
and
are similar triangles, and that
equals twice the circumradius of the circumcircle of
.
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing