1996 USAMO Problems/Problem 5: Difference between revisions
| Line 71: | Line 71: | ||
The only acute angle satisfying this equality is <math>x=60^\circ</math>. Therefore, <math>\angle ACB=80^\circ-x+30^\circ=50^\circ</math> and <math>\angle BAC=10^\circ+40^\circ=50^\circ</math>. Thus, <math>\triangle ABC</math> is isosceles. | The only acute angle satisfying this equality is <math>x=60^\circ</math>. Therefore, <math>\angle ACB=80^\circ-x+30^\circ=50^\circ</math> and <math>\angle BAC=10^\circ+40^\circ=50^\circ</math>. Thus, <math>\triangle ABC</math> is isosceles. | ||
==Solution 3== | |||
If <math>\angle{MBC} = x</math> then by Angle Sum in a Triangle we have <math>\angle{MCB} = 80^\circ - x</math>. By Trig Ceva we have | |||
<cmath>\sin 10^\circ \sin x \sin 30^\circ = \sin (80^\circ - x) \sin 40^\circ \sin 20^\circ.</cmath> | |||
Because <math>\dfrac{\sin x}{\sin (80^\circ - x)}</math> is monotonic increasing over <math>(0, \dfrac{\pi}{2})</math>, there is only one solution <math>0 \le x \le \dfrac{\pi}{2}</math> to the equation. We claim it is <math>x = 60^\circ</math>, which will make <math>ABC</math> isosceles with <math>\angle{A} = \angle{C}</math>. | |||
Notice that | |||
<cmath>\sin 20^\circ \sin 20^\circ \sin 40^\circ = 2 \sin 10^\circ \cos 10^\circ \sin 20^\circ \sin 40^\circ</cmath> | |||
<cmath>= \sin 10^\circ (\sin 10^\circ + \frac{1}{2}) \sin 40^\circ</cmath> | |||
<cmath>= \sin 10^\circ (\frac{1}{2} \sin 40^\circ + \frac{1}{2} (\cos 30^\circ - \cos 50^\circ))</cmath> | |||
<cmath>= \sin 10^\circ \frac{1}{2} \cos 30^\circ</cmath> | |||
<cmath>= \sin 10^\circ \sin 30^\circ \sin 60^\circ,</cmath> | |||
as desired. | |||
{{MAA Notice}} | {{MAA Notice}} | ||
Revision as of 12:36, 13 February 2015
Problem
Let
be a triangle, and
an interior point such that
,
,
and
. Prove that the triangle is isosceles.
Solution 1
Clearly,
and
. Now by the Law of Sines on triangles
and
, we have
and
Combining these equations gives us
Without loss of generality, let
and
. Then by the Law of Cosines, we have
Thus,
, our desired conclusion.
Solution 2
By the law of sines,
and
, so
.
Let
. Then,
. By the law of sines,
.
Combining, we have
. From here, we can use the given trigonometric identities at each step:
\begin{array}[t]{llr}
\frac{sin(80^\circ-x)}{sin(x)}&=\frac{sin(10^\circ)sin(30^\circ)}{sin(20^\circ)sin(40^\circ)}\\[10]
sin(80^\circ-x)sin(20^\circ)sin(40^\circ)&=sin(10^\circ)sin(30^\circ)sin(x)\\[10]
sin(80^\circ-x)sin(20^\circ)sin(40^\circ)&=\frac{1}{2}sin(10^\circ)sin(x)&[sin(30^\circ)=1/2]\\[10]
sin(80^\circ-x)sin(30^\circ-10^\circ)sin(30^\circ+10^\circ)&=\frac{1}{2}sin(10^\circ)sin(x)\\[10]
sin(80^\circ-x)(cos^2(10^\circ)-cos^2(30^\circ))&=\frac{1}{2}sin(10^\circ)sin(x)&[sin(A-B)sin(A+B)=cos^2 B-cos^2 A]\\[10]
sin(80^\circ-x)(cos^2(10^\circ)-\frac{3}{4})&=\frac{1}{2}sin(10^\circ)sin(x)&[cos(30^\circ)=\frac{\sqrt{3}}{2}]\\[10]
sin(80^\circ-x) \frac{4cos^3(10^\circ)-3cos(10^\circ)}{4cos(10^\circ)}&=\frac{1}{2}sin(10^\circ)sin(x)\\[10]
sin(80^\circ-x) \frac{cos(30^\circ)}{4cos(10^\circ)}&=\frac{1}{2}sin(10^\circ)sin(x)&[cos(3A)=4cos^3 A-3cos A]\\[10]
sin(80^\circ-x)cos(30^\circ)&=2sin(10^\circ)cos(10^\circ)sin(x)\\[10]
sin(80^\circ-x)cos(30^\circ)&=sin(20^\circ)sin(x)&[sin(2A)=2sin A cos A ]\\[10]
sin(80^\circ-x)sin(60^\circ)&=sin(20^\circ)sin(x)&[cos(30^\circ)=sin(60^\circ)]\\[10]
\frac{1}{2}(cos(20^\circ-x)-cos(140^\circ-x))&=\frac{1}{2}(cos(20^\circ-x)-cos(20^\circ+x))&[sin A sin B=\frac{1}{2}(cos(A-B)-cos(A+B))]\\[10]
cos(140^\circ-x)&=cos(20^\circ+x)
\end{array} (Error compiling LaTeX. Unknown error_msg)
The only acute angle satisfying this equality is
. Therefore,
and
. Thus,
is isosceles.
Solution 3
If
then by Angle Sum in a Triangle we have
. By Trig Ceva we have
Because
is monotonic increasing over
, there is only one solution
to the equation. We claim it is
, which will make
isosceles with
.
Notice that
as desired.
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination