2015 AMC 10A Problems/Problem 21: Difference between revisions
mNo edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
==Problem | {{duplicate|[[2015 AMC 12A Problems|2015 AMC 12A #16]] and [[2015 AMC 10A Problems|2015 AMC 10A #21]]}} | ||
==Problem== | |||
Tetrahedron <math>ABCD</math> has <math>AB=5</math>, <math>AC=3</math>, <math>BC=4</math>, <math>BD=4</math>, <math>AD=3</math>, and <math>CD=\tfrac{12}5\sqrt2</math>. What is the volume of the tetrahedron? | Tetrahedron <math>ABCD</math> has <math>AB=5</math>, <math>AC=3</math>, <math>BC=4</math>, <math>BD=4</math>, <math>AD=3</math>, and <math>CD=\tfrac{12}5\sqrt2</math>. What is the volume of the tetrahedron? | ||
| Line 11: | Line 12: | ||
<cmath>V = \dfrac{1}{3} Bh = \dfrac{1}{3} h \cdot BE \cdot \dfrac{6\sqrt{2}}{5} = \dfrac{24}{5},</cmath> | <cmath>V = \dfrac{1}{3} Bh = \dfrac{1}{3} h \cdot BE \cdot \dfrac{6\sqrt{2}}{5} = \dfrac{24}{5},</cmath> | ||
and so our answer is <math>\textbf{(C)}</math>. | and so our answer is <math>\textbf{(C)}</math>. | ||
== See Also == | |||
{{AMC10 box|year=2015|ab=A|num-b=20|num-a=22}} | |||
{{AMC12 box|year=2015|ab=A|num-b=15|num-a=17}} | |||
Revision as of 19:52, 4 February 2015
- The following problem is from both the 2015 AMC 12A #16 and 2015 AMC 10A #21, so both problems redirect to this page.
Problem
Tetrahedron
has
,
,
,
,
, and
. What is the volume of the tetrahedron?
Solution
Let the midpoint of
be
. We have
, and so by the Pythagorean Theorem
and
. Because the altitude from
of tetrahedron
passes touches plane
on
, it is also an altitude of triangle
. The area
of triangle
is, by Heron's Formula, given by
Substituting
and performing huge (but manageable) computations yield
, so
. Thus, if
is the length of the altitude from
of the tetrahedron,
. Our answer is thus
and so our answer is
.
See Also
| 2015 AMC 10A (Problems • Answer Key • Resources) | ||
| Preceded by Problem 20 |
Followed by Problem 22 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
| 2015 AMC 12A (Problems • Answer Key • Resources) | |
| Preceded by Problem 15 |
Followed by Problem 17 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |