2014 USAMO Problems/Problem 5: Difference between revisions
Created page with "==Problem== Let <math>ABC</math> be a triangle with orthocenter <math>H</math> and let <math>P</math> be the second intersection of the circumcircle of triangle <math>AHC</math> ..." |
m Fixed typo |
||
| Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
Let <math>ABC</math> be a triangle with orthocenter <math>H</math> and let <math>P</math> be the second intersection of the circumcircle of triangle <math>AHC</math> with the internal bisector of the angle <math>\angle BAC</math>. Let <math>X</math> be the circumcenter of triangle <math> | Let <math>ABC</math> be a triangle with orthocenter <math>H</math> and let <math>P</math> be the second intersection of the circumcircle of triangle <math>AHC</math> with the internal bisector of the angle <math>\angle BAC</math>. Let <math>X</math> be the circumcenter of triangle <math>APB</math> and <math>Y</math> the orthocenter of triangle <math>APC</math>. Prove that the length of segment <math>XY</math> is equal to the circumradius of triangle <math>ABC</math>. | ||
==Solution== | ==Solution== | ||
Revision as of 19:51, 6 December 2014
Problem
Let
be a triangle with orthocenter
and let
be the second intersection of the circumcircle of triangle
with the internal bisector of the angle
. Let
be the circumcenter of triangle
and
the orthocenter of triangle
. Prove that the length of segment
is equal to the circumradius of triangle
.