2009 AIME I Problems/Problem 5: Difference between revisions
No edit summary |
IMOJonathan (talk | contribs) This proposes a second solution. |
||
| Line 3: | Line 3: | ||
Triangle <math>ABC</math> has <math>AC = 450</math> and <math>BC = 300</math>. Points <math>K</math> and <math>L</math> are located on <math>\overline{AC}</math> and <math>\overline{AB}</math> respectively so that <math>AK = CK</math>, and <math>\overline{CL}</math> is the angle bisector of angle <math>C</math>. Let <math>P</math> be the point of intersection of <math>\overline{BK}</math> and <math>\overline{CL}</math>, and let <math>M</math> be the point on line <math>BK</math> for which <math>K</math> is the midpoint of <math>\overline{PM}</math>. If <math>AM = 180</math>, find <math>LP</math>. | Triangle <math>ABC</math> has <math>AC = 450</math> and <math>BC = 300</math>. Points <math>K</math> and <math>L</math> are located on <math>\overline{AC}</math> and <math>\overline{AB}</math> respectively so that <math>AK = CK</math>, and <math>\overline{CL}</math> is the angle bisector of angle <math>C</math>. Let <math>P</math> be the point of intersection of <math>\overline{BK}</math> and <math>\overline{CL}</math>, and let <math>M</math> be the point on line <math>BK</math> for which <math>K</math> is the midpoint of <math>\overline{PM}</math>. If <math>AM = 180</math>, find <math>LP</math>. | ||
== Solution == | == Solution 1== | ||
<center><asy> | <center><asy> | ||
import markers; | import markers; | ||
| Line 41: | Line 41: | ||
<cmath>LP=\boxed {072}</cmath> | <cmath>LP=\boxed {072}</cmath> | ||
==Solution 2== | |||
<center><asy> | |||
import markers; | |||
defaultpen(fontsize(8)); | |||
size(300); | |||
pair A=(0,0), B=(30*sqrt(331),0), C, K, L, M, P; | |||
C = intersectionpoints(Circle(A,450), Circle(B,300))[0]; | |||
K = midpoint(A--C); | |||
L = (3*B+2*A)/5; | |||
P = extension(B,K,C,L); | |||
M = 2*K-P; | |||
draw(A--B--C--cycle); | |||
draw(C--L);draw(B--M--A); | |||
markangle(n=1,radius=15,A,C,L,marker(markinterval(stickframe(n=1),true))); | |||
markangle(n=1,radius=15,L,C,B,marker(markinterval(stickframe(n=1),true))); | |||
dot(A^^B^^C^^K^^L^^M^^P); | |||
label("$A$",A,(-1,-1));label("$B$",B,(1,-1));label("$C$",C,(1,1)); | |||
label("$K$",K,(0,2));label("$L$",L,(0,-2));label("$M$",M,(-1,1)); | |||
label("$P$",P,(1,1)); | |||
label("$180$",(A+M)/2,(-1,0));label("$y$",(P+C)/2,(-1,0));label("$x$",(A+K)/2,(0,2));label("$x$",(K+C)/2,(0,2)); | |||
label("$2y/5$",(L+P)/2,(-1,0));label("$180$",(B+C)/2,(1,1)); | |||
</asy></center> | |||
Using the diagram above, we can solve this problem by using mass points. By angle bisector theorem: | |||
<cmath>\frac{BL}{CB}=\frac{AL}{CA}\implies\frac{BL}{300}=\frac{AL}{450}\implies3BL=2AL</cmath> | |||
So, we can weight <math>A</math> as <math>2</math> and <math>B</math> as <math>3</math> and <math>L</math> as <math>5</math>. Since <math>K</math> is the midpoint of <math>A</math> and <math>C</math>, the weight of <math>A</math> is equal to the weight of <math>C</math>, which equals <math>2</math>. | |||
Also, since the weight of <math>L</math> is <math>5</math> and <math>C</math> is <math>2</math>, we can weight <math>P</math> as <math>7</math>. | |||
<cmath>\n</cmath> | |||
By the definition of mass points, <cmath>\frac{LP}{CP}=\frac{2}{5}\impliesLP=\frac{2}{5}CP</cmath> | |||
By vertical angles, angle <math>MKA =</math> angle <math>PKC</math>. | |||
Also, it is given that <math>AK=CK</math> and <math>PK=MK</math>. | |||
<cmath>\n</cmath>By the SAS congruence, triangle <math>MKA</math> = triangle <math>PKC</math>. So, <math>MA</math> = <math>CP</math> = 180. | |||
Since <math>LP=\frac{2}{5}CP</math>, <math>LP = \frac{2}{5}180 = \boxed{072}</math> | |||
== See also == | == See also == | ||
Revision as of 21:49, 30 August 2014
Problem
Triangle
has
and
. Points
and
are located on
and
respectively so that
, and
is the angle bisector of angle
. Let
be the point of intersection of
and
, and let
be the point on line
for which
is the midpoint of
. If
, find
.
Solution 1
![[asy] import markers; defaultpen(fontsize(8)); size(300); pair A=(0,0), B=(30*sqrt(331),0), C, K, L, M, P; C = intersectionpoints(Circle(A,450), Circle(B,300))[0]; K = midpoint(A--C); L = (3*B+2*A)/5; P = extension(B,K,C,L); M = 2*K-P; draw(A--B--C--cycle); draw(C--L);draw(B--M--A); markangle(n=1,radius=15,A,C,L,marker(markinterval(stickframe(n=1),true))); markangle(n=1,radius=15,L,C,B,marker(markinterval(stickframe(n=1),true))); dot(A^^B^^C^^K^^L^^M^^P); label("$A$",A,(-1,-1));label("$B$",B,(1,-1));label("$C$",C,(1,1)); label("$K$",K,(0,2));label("$L$",L,(0,-2));label("$M$",M,(-1,1)); label("$P$",P,(1,1)); label("$180$",(A+M)/2,(-1,0));label("$180$",(P+C)/2,(-1,0));label("$225$",(A+K)/2,(0,2));label("$225$",(K+C)/2,(0,2)); label("$72$",(L+P)/2,(-1,0));label("$300$",(B+C)/2,(1,1)); [/asy]](http://latex.artofproblemsolving.com/7/d/a/7da806e0aa0782795b140c81cd725875ad3dfc7c.png)
Since
is the midpoint of
and
, quadrilateral
is a parallelogram, which implies
and
is similar to
Thus,
Now lets apply the angle bisector theorem.
Solution 2
![[asy] import markers; defaultpen(fontsize(8)); size(300); pair A=(0,0), B=(30*sqrt(331),0), C, K, L, M, P; C = intersectionpoints(Circle(A,450), Circle(B,300))[0]; K = midpoint(A--C); L = (3*B+2*A)/5; P = extension(B,K,C,L); M = 2*K-P; draw(A--B--C--cycle); draw(C--L);draw(B--M--A); markangle(n=1,radius=15,A,C,L,marker(markinterval(stickframe(n=1),true))); markangle(n=1,radius=15,L,C,B,marker(markinterval(stickframe(n=1),true))); dot(A^^B^^C^^K^^L^^M^^P); label("$A$",A,(-1,-1));label("$B$",B,(1,-1));label("$C$",C,(1,1)); label("$K$",K,(0,2));label("$L$",L,(0,-2));label("$M$",M,(-1,1)); label("$P$",P,(1,1)); label("$180$",(A+M)/2,(-1,0));label("$y$",(P+C)/2,(-1,0));label("$x$",(A+K)/2,(0,2));label("$x$",(K+C)/2,(0,2)); label("$2y/5$",(L+P)/2,(-1,0));label("$180$",(B+C)/2,(1,1)); [/asy]](http://latex.artofproblemsolving.com/3/c/2/3c2e0d82fd6a211b32332c5caa82c904b872634c.png)
Using the diagram above, we can solve this problem by using mass points. By angle bisector theorem:
So, we can weight
as
and
as
and
as
. Since
is the midpoint of
and
, the weight of
is equal to the weight of
, which equals
.
Also, since the weight of
is
and
is
, we can weight
as
.
\[\n\] (Error compiling LaTeX. Unknown error_msg)
By the definition of mass points,
\[\frac{LP}{CP}=\frac{2}{5}\impliesLP=\frac{2}{5}CP\] (Error compiling LaTeX. Unknown error_msg)
By vertical angles, angle
angle
.
Also, it is given that
and
.
\[\n\] (Error compiling LaTeX. Unknown error_msg)
By the SAS congruence, triangle
= triangle
. So,
=
= 180.
Since
,
See also
| 2009 AIME I (Problems • Answer Key • Resources) | ||
| Preceded by Problem 4 |
Followed by Problem 6 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing