2011 AMC 10B Problems/Problem 18: Difference between revisions
No edit summary |
|||
| Line 4: | Line 4: | ||
<math> \textbf{(A)}\ 15 \qquad\textbf{(B)}\ 30 \qquad\textbf{(C)}\ 45 \qquad\textbf{(D)}\ 60 \qquad\textbf{(E)}\ 75</math> | <math> \textbf{(A)}\ 15 \qquad\textbf{(B)}\ 30 \qquad\textbf{(C)}\ 45 \qquad\textbf{(D)}\ 60 \qquad\textbf{(E)}\ 75</math> | ||
[[Category: Introductory Geometry Problems]] | |||
==Solution== | ==Solution== | ||
Revision as of 10:43, 13 August 2014
Problem
Rectangle
has
and
. Point
is chosen on side
so that
. What is the degree measure of
?
Solution
It is given that
. Since
and
are alternate interior angles and
,
. Use the Base Angle Theorem to show
. We know that
is a rectangle, so it follows that
. We notice that
is a
triangle, and
. If we let
be the measure of
then
See Also
| 2011 AMC 10B (Problems • Answer Key • Resources) | ||
| Preceded by Problem 17 |
Followed by Problem 19 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing