1994 USAMO Problems/Problem 3: Difference between revisions
Created page with "==Problem== A convex hexagon <math>ABCDEF</math> is inscribed in a circle such that <math>AB=CD=EF</math> and diagonals <math>AD,BE</math>, and <math>CF</math> are concurrent. Le..." |
|||
| Line 3: | Line 3: | ||
==Solution== | ==Solution== | ||
Let the diagonals <math>AD</math>, <math>BE</math>, <math>CF</math> meet at <math>Q</math>. | |||
First, let's show that the triangles <math>\triangle AEC</math> and <math>\triangle QED</math> are similar. | |||
<center> | |||
<asy> | |||
pair A,B,C,D,E,F,P,Q; | |||
A=(-0.96,0.28); | |||
B=(-0.352,0.936); | |||
C=(0,1); | |||
D=(4/5,3/5); | |||
E=(4/5,-3/5); | |||
F=(0,-1); | |||
P=IntersectionPoint(A--D,C--E); | |||
Q=IntersectionPoint(A--D,C--F); | |||
draw(A--B); | |||
draw(B--C); | |||
draw(C--D); | |||
draw(D--E,green); | |||
draw(E--F); | |||
draw(F--A); | |||
draw(A--C,red); | |||
draw(A--Q); | |||
draw(A--E,red); | |||
draw(B--Q); | |||
draw(C--E,red); | |||
draw(C--F); | |||
draw(Q--E,green); | |||
draw(Q--D,green); | |||
draw(circle((0,0),1)); | |||
label("\(A\)",A,W); | |||
label("\(B\)",B,N); | |||
label("\(C\)",C,N); | |||
label("\(D\)",D,NE); | |||
label("\(E\)",E,SE); | |||
label("\(F\)",F,S); | |||
label("\(P\)",(0.3,0.8),S); | |||
label("\(Q\)",(-0.15,0.4),S); | |||
</asy> | |||
</center> | |||
<math>\angle ACE=\angle ADE</math> because <math>A</math>,<math>C</math>,<math>D</math> and <math>E</math> all lie on the circle, and <math>\angle ADE=\angle QDE</math>. <math>\angle AEB=\angle CED</math> because <math>AB=CD</math>, and <math>A</math>,<math>B</math>,<math>C</math>,<math>D</math> and <math>E</math> all lie on the circle. Then, | |||
<math>\angle AEB=\angle CED \rightarrow \angle AEB+\angle BEC=\angle CED+\angle BEC \rightarrow \angle AEC=\angle QED</math> | |||
Therefore, <math>\triangle AEC</math> and <math>\triangle QED</math> are similar, so <math>AC/CE=QD/DE</math>. | |||
Next, let's show that <math>\triangle AEC</math> and <math>\triangle CDQ</math> are similar. | |||
<center> | |||
<asy> | |||
pair A,B,C,D,E,F,P,Q; | |||
A=(-0.96,0.28); | |||
B=(-0.352,0.936); | |||
C=(0,1); | |||
D=(4/5,3/5); | |||
E=(4/5,-3/5); | |||
F=(0,-1); | |||
P=IntersectionPoint(A--D,C--E); | |||
Q=IntersectionPoint(A--D,C--F); | |||
draw(A--B); | |||
draw(B--C); | |||
draw(C--D,green); | |||
draw(D--E); | |||
draw(E--F); | |||
draw(F--A); | |||
draw(A--C,red); | |||
draw(A--Q); | |||
draw(A--E,red); | |||
draw(B--E); | |||
draw(C--E,red); | |||
draw(Q--F); | |||
draw(Q--C,green); | |||
draw(Q--D,green); | |||
draw(circle((0,0),1)); | |||
label("\(A\)",A,W); | |||
label("\(B\)",B,N); | |||
label("\(C\)",C,N); | |||
label("\(D\)",D,NE); | |||
label("\(E\)",E,SE); | |||
label("\(F\)",F,S); | |||
label("\(P\)",(0.3,0.8),S); | |||
label("\(Q\)",(-0.15,0.4),S); | |||
</asy> | |||
</center> | |||
<math>\angle AEC=\angle ADC</math> because <math>A</math>,<math>C</math>,<math>D</math> and <math>E</math> all lie on the circle, and <math>\angle ADC=\angle CDQ</math>. <math>\angle EAD=\angle ECD</math> because <math>A</math>,<math>C</math>,<math>D</math> and <math>E</math> all lie on the circle. <math>\angle DAC=\angle ECF</math> because <math>CD=EF</math>, and <math>A</math>,<math>C</math>,<math>D</math>,<math>E</math> and <math>F</math> all lie on the circle. Then, | |||
<math>\angle EAC=\angle EAD+\angle DAC=\angle ECD+\angle ECF=\angle DCY</math> | |||
Therefore, <math>\triangle AEC</math> and <math>\triangle CDQ</math> are similar, so <math>AC/CE=CQ/QD</math>. | |||
Lastly, let's show that <math>\triangle CPQ</math> and <math>\triangle EPD</math> are similar. | |||
<center> | |||
<asy> | |||
pair A,B,C,D,E,F,P,Q; | |||
A=(-0.96,0.28); | |||
B=(-0.352,0.936); | |||
C=(0,1); | |||
D=(4/5,3/5); | |||
E=(4/5,-3/5); | |||
F=(0,-1); | |||
P=IntersectionPoint(A--D,C--E); | |||
Q=IntersectionPoint(A--D,C--F); | |||
draw(A--B); | |||
draw(B--C); | |||
draw(C--D); | |||
draw(D--E,green); | |||
draw(E--F); | |||
draw(F--A); | |||
draw(A--C); | |||
draw(A--Q); | |||
draw(A--E); | |||
draw(B--E); | |||
draw(P--E,green); | |||
draw(Q--F); | |||
draw(C--P,red); | |||
draw(Q--P,red); | |||
draw(C--Q,red); | |||
draw(D--P,green); | |||
draw(circle((0,0),1)); | |||
label("\(A\)",A,W); | |||
label("\(B\)",B,N); | |||
label("\(C\)",C,N); | |||
label("\(D\)",D,NE); | |||
label("\(E\)",E,SE); | |||
label("\(F\)",F,S); | |||
label("\(P\)",(0.3,0.8),S); | |||
label("\(Q\)",(-0.15,0.4),S); | |||
</asy> | |||
</center> | |||
Because <math>CD=EF</math> and <math>C</math>,<math>D</math>,<math>E</math> and <math>F</math> all lie on the circle, <math>CF</math> is parallel to <math>DE</math>. So, <math>\triangle CPQ</math> and <math>\triangle EPD</math> are similar, and <math>CQ/DE=CP/PE</math>. | |||
Putting it all together, <math>CP/PE=CQ/DE=AC/CE\cdot QD/DE=(AC/CE)^2</math>. | |||
Revision as of 15:34, 30 May 2014
Problem
A convex hexagon
is inscribed in a circle such that
and diagonals
, and
are concurrent. Let
be the intersection of
and
. Prove that
.
Solution
Let the diagonals
,
,
meet at
.
First, let's show that the triangles
and
are similar.
because
,
,
and
all lie on the circle, and
.
because
, and
,
,
,
and
all lie on the circle. Then,
Therefore,
and
are similar, so
.
Next, let's show that
and
are similar.
because
,
,
and
all lie on the circle, and
.
because
,
,
and
all lie on the circle.
because
, and
,
,
,
and
all lie on the circle. Then,
Therefore,
and
are similar, so
.
Lastly, let's show that
and
are similar.
Because
and
,
,
and
all lie on the circle,
is parallel to
. So,
and
are similar, and
.
Putting it all together,
.