2013 AIME II Problems/Problem 10: Difference between revisions
No edit summary |
|||
| Line 2: | Line 2: | ||
Given a circle of radius <math>\sqrt{13}</math>, let <math>A</math> be a point at a distance <math>4 + \sqrt{13}</math> from the center <math>O</math> of the circle. Let <math>B</math> be the point on the circle nearest to point <math>A</math>. A line passing through the point <math>A</math> intersects the circle at points <math>K</math> and <math>L</math>. The maximum possible area for <math>\triangle BKL</math> can be written in the form <math>\frac{a - b\sqrt{c}}{d}</math>, where <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math> are positive integers, <math>a</math> and <math>d</math> are relatively prime, and <math>c</math> is not divisible by the square of any prime. Find <math>a+b+c+d</math>. | Given a circle of radius <math>\sqrt{13}</math>, let <math>A</math> be a point at a distance <math>4 + \sqrt{13}</math> from the center <math>O</math> of the circle. Let <math>B</math> be the point on the circle nearest to point <math>A</math>. A line passing through the point <math>A</math> intersects the circle at points <math>K</math> and <math>L</math>. The maximum possible area for <math>\triangle BKL</math> can be written in the form <math>\frac{a - b\sqrt{c}}{d}</math>, where <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math> are positive integers, <math>a</math> and <math>d</math> are relatively prime, and <math>c</math> is not divisible by the square of any prime. Find <math>a+b+c+d</math>. | ||
==Solution== | ==Solution 1== | ||
Now we put the figure in the Cartesian plane, let the center of the circle <math>O (0,0)</math>, then <math>B (\sqrt{13},0)</math>, and <math>A(4+\sqrt{13},0)</math> | Now we put the figure in the Cartesian plane, let the center of the circle <math>O (0,0)</math>, then <math>B (\sqrt{13},0)</math>, and <math>A(4+\sqrt{13},0)</math> | ||
| Line 13: | Line 13: | ||
So, <math>LK=\sqrt{1+k^2}\cdot \sqrt{(x_1+x_2)^2-4x_1x_2}</math> | So, <math>LK=\sqrt{1+k^2}\cdot \sqrt{(x_1+x_2)^2-4x_1x_2}</math> | ||
Also, the distance between <math> | Also, the distance between <math>B</math> and <math>LK</math> is <math>\frac{k\times \sqrt{13}-(4+\sqrt{13})\cdot k}{\sqrt{1+k^2}}=\frac{-4k}{\sqrt{1+k^2}}</math> | ||
So the ares <math>S=0.5ah=\frac{-4k\sqrt{(16-8\sqrt{13})k^2-13}}{k^2+1}</math> | So the ares <math>S=0.5ah=\frac{-4k\sqrt{(16-8\sqrt{13})k^2-13}}{k^2+1}</math> | ||
| Line 20: | Line 20: | ||
So the answer is <math>104+26+13+3=\boxed{146}</math>. | So the answer is <math>104+26+13+3=\boxed{146}</math>. | ||
==Solution 2== | |||
Draw <math>OC</math> perpendicular to <math>KL</math> at <math>C</math>. Draw <math>BD</math> perpendicular to <math>KL</math> at <math>D</math>. | |||
<cmath>\frac{\triangle OKL}{\triangle BKL} = \frac{OC}{BD} = \frac{AO}{AB} = \frac{4+\sqrt{13}}{4}</cmath> | |||
Therefore, to maximize area of <math>\triangle BKL</math>, we need to maximize area of <math>\triangle OKL</math>. | |||
<cmath>\triangle OKL = \frac12 r^2 \sin{\angle KOL}</cmath> | |||
So when area of <math>\triangle OKL</math> is maximized, <math>\angle KOL = \frac{\pi}{2}</math>. | |||
Eventually, we get <cmath>\triangle BKL= (\frac12 \cdot \sqrt{13}^2)\cdot(\frac{4}{4+\sqrt{13}})=\frac{104-26\sqrt{13}}{3}</cmath> | |||
So the answer is <math>104+26+13+3=\boxed{146}</math>. | |||
So the answer is | |||
==See Also== | ==See Also== | ||
{{AIME box|year=2013|n=II|num-b=9|num-a=11}} | {{AIME box|year=2013|n=II|num-b=9|num-a=11}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
Revision as of 07:56, 31 January 2014
Problem 10
Given a circle of radius
, let
be a point at a distance
from the center
of the circle. Let
be the point on the circle nearest to point
. A line passing through the point
intersects the circle at points
and
. The maximum possible area for
can be written in the form
, where
,
,
, and
are positive integers,
and
are relatively prime, and
is not divisible by the square of any prime. Find
.
Solution 1
Now we put the figure in the Cartesian plane, let the center of the circle
, then
, and
The equation for Circle O is
, and let the slope of the line
be
, then the equation for line
is
Then we get
, according to Vieta's Formulas, we get
, and
So,
Also, the distance between
and
is
So the ares
Then the maximum value of
is
So the answer is
.
Solution 2
Draw
perpendicular to
at
. Draw
perpendicular to
at
.
Therefore, to maximize area of
, we need to maximize area of
.
So when area of
is maximized,
.
Eventually, we get
So the answer is
.
So the answer is
See Also
| 2013 AIME II (Problems • Answer Key • Resources) | ||
| Preceded by Problem 9 |
Followed by Problem 11 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing