2003 AMC 12B Problems/Problem 8: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
{{duplicate|[[2003 AMC 12B Problems|2003 AMC 12B #8]] and [[2003 AMC 10B Problems|2003 AMC 10B #13]]}} | |||
==Problem== | |||
Let <math>\clubsuit(x)</math> denote the sum of the digits of the positive integer <math>x</math>. For example, <math>\clubsuit(8)=8</math> and <math>\clubsuit(123)=1+2+3=6</math>. For how many two-digit values of <math>x</math> is <math>\clubsuit(\clubsuit(x))=3</math>? | |||
<math>\textbf{(A) } 3 \qquad\textbf{(B) } 4 \qquad\textbf{(C) } 6 \qquad\textbf{(D) } 9 \qquad\textbf{(E) } 10 </math> | |||
==Solution== | |||
Let <math>a</math> and <math>b</math> be the digits of <math>x</math>, | Let <math>a</math> and <math>b</math> be the digits of <math>x</math>, | ||
| Line 5: | Line 13: | ||
Clearly <math>\clubsuit(x)</math> can only be <math>3, 12, 21,</math> or <math>30</math> and only <math>3</math> and <math>12</math> are possible to have two digits sum to. | Clearly <math>\clubsuit(x)</math> can only be <math>3, 12, 21,</math> or <math>30</math> and only <math>3</math> and <math>12</math> are possible to have two digits sum to. | ||
If <math>\clubsuit(x)</math> sums to <math>3</math>, there are 3 different solutions : <math>12, 21, or 30</math> | If <math>\clubsuit(x)</math> sums to <math>3</math>, there are 3 different solutions : <math>12, 21, \text{or } 30</math> | ||
If <math>\clubsuit(x)</math> sums to <math>12</math>, there are 7 different solutions: <math>39, 48, 57, 66,75, 84, or 93</math> | If <math>\clubsuit(x)</math> sums to <math>12</math>, there are 7 different solutions: <math>39, 48, 57, 66,75, 84, \text{or } 93</math> | ||
The total number of solutions is <math> 3 + 7 =10 \Rightarrow \text (E)</math> | |||
==See Also== | |||
{{AMC12 box|year=2003|ab=B|num-b=7|num-a=9}} | |||
{{AMC10 box|year=2003|ab=B|num-b=12|num-a=14}} | |||
{{MAA Notice}} | {{MAA Notice}} | ||
Revision as of 23:34, 4 January 2014
- The following problem is from both the 2003 AMC 12B #8 and 2003 AMC 10B #13, so both problems redirect to this page.
Problem
Let
denote the sum of the digits of the positive integer
. For example,
and
. For how many two-digit values of
is
?
Solution
Let
and
be the digits of
,
Clearly
can only be
or
and only
and
are possible to have two digits sum to.
If
sums to
, there are 3 different solutions :
If
sums to
, there are 7 different solutions:
The total number of solutions is
See Also
| 2003 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 7 |
Followed by Problem 9 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
| 2003 AMC 10B (Problems • Answer Key • Resources) | ||
| Preceded by Problem 12 |
Followed by Problem 14 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination