2012 IMO Problems/Problem 4: Difference between revisions
| Line 7: | Line 7: | ||
Now we look at <math>b = -a, c = 0.</math> <math>f(a)^2 + f(-a)^2 + f(0)^2 = 2f(a)f(-a) + 2f(-a)f(0) + 2f(0)f(a) \Rightarrow</math> <math>f(a)^2 + f(-a)^2 = 2f(a)f(-a) \Rightarrow</math> <math>f(a)^2 - 2f(a)f(-a) + f(-a)^2 = 0 \Rightarrow</math> <math>(f(a) - f(-a))^2=0 \Rightarrow</math> <cmath>f(a)=f(-a).</cmath> | Now we look at <math>b = -a, c = 0.</math> <math>f(a)^2 + f(-a)^2 + f(0)^2 = 2f(a)f(-a) + 2f(-a)f(0) + 2f(0)f(a) \Rightarrow</math> <math>f(a)^2 + f(-a)^2 = 2f(a)f(-a) \Rightarrow</math> <math>f(a)^2 - 2f(a)f(-a) + f(-a)^2 = 0 \Rightarrow</math> <math>(f(a) - f(-a))^2=0 \Rightarrow</math> <cmath>f(a)=f(-a).</cmath> | ||
We can write <math>f(c)^2 - 2f(c)(f(a)+f(b)) + (f(a)-f(b))^2 = 0 \Rightarrow</math> <cmath>f(c) = f(-c) = f(a+b) = f(a) + f(b) \pm 2\sqrt{f(a)f(b)}</cmath> | We can write <math>f(c)^2 - 2f(c)(f(a)+f(b)) + (f(a)-f(b))^2 = 0 \Rightarrow</math> | ||
<cmath>f(c) = f(-c) = f(a+b) =\frac{2(f(a)+f(b)) \pm \sqrt{4(f(a)+f(b))^2 - 4(f(a)-f(b))^2}}{2}</cmath> | |||
<cmath>\Rightarrow f(a+b) = f(a) + f(b) \pm 2\sqrt{f(a)f(b)}</cmath> | |||
If <math>f(b) = 0</math>, then <cmath>f(a+b) = f(a) = f((a)mod(b))</cmath> | If <math>f(b) = 0</math>, then <cmath>f(a+b) = f(a) = f((a)mod(b))</cmath> | ||
'''Case 1''': <math>f(1) = 0 \Rightarrow f(x)= 0</math> <math>\forall</math> <math>x</math> <math>\Box</math> | '''Case 1''': <math>f(1) = 0 \Rightarrow f(x)= 0</math> <math>\forall</math> <math>x.</math> <math>\Box</math> | ||
Case 2: <math>f(1) \not= 0</math>, we will have <math>f(2) = f(1) + f(1) \pm 2\sqrt{f(1)f(1)} \Rightarrow f(2) = 0</math> or <math>f(2) = 4f(1)</math> | Case 2: <math>f(1) \not= 0</math>, we will have <math>f(2) = f(1) + f(1) \pm 2\sqrt{f(1)f(1)} \Rightarrow f(2) = 0</math> or <math>f(2) = 4f(1)</math> | ||
| Line 53: | Line 57: | ||
<math>\Rightarrow f(x) = f(1)x^2</math> <math>\forall</math> <math>x.\Box</math> | <math>\Rightarrow f(x) = f(1)x^2</math> <math>\forall</math> <math>x.\Box</math> | ||
So, Case 2.1, Case 2.2.1 and Case 2.2.2 are the three independent possible solutions. | |||
--Dineshram | --Dineshram | ||
Revision as of 05:46, 4 December 2013
Find all functions
such that, for all integers
and
that satisfy
, the following equality holds:
(Here
denotes the set of integers.)
Solution
Consider
Then
Now we look at
We can write
If
, then
Case 1:
Case 2:
, we will have
or
Case 2.1:
if
is odd,
if
is even.
Case 2.2:
or
Case 2.2.1:
and
or
and
or
Case 2.2.2:
or
and
or
If
then
We will prove by induction
If
then
is true for some
.
and if the statement is true for
or
and
or
the statement is true for
as well.
So, Case 2.1, Case 2.2.1 and Case 2.2.2 are the three independent possible solutions.
--Dineshram