Art of Problem Solving
During AMC 10A/12A testing, the AoPS Wiki is in read-only mode and no edits can be made.

1962 AHSME Problems/Problem 7: Difference between revisions

Fadebekun (talk | contribs)
Fadebekun (talk | contribs)
Line 2: Line 2:
Let the bisectors of the exterior angles at <math>B</math> and <math>C</math> of triangle <math>ABC</math> meet at D<math>.</math> Then, if all measurements are in degrees, angle <math>BDC</math> equals:  
Let the bisectors of the exterior angles at <math>B</math> and <math>C</math> of triangle <math>ABC</math> meet at D<math>.</math> Then, if all measurements are in degrees, angle <math>BDC</math> equals:  


<math> \textbf{(A)}\ \frac{1}{2}(90-A)\qquad\textbf{(B)}\ 90-A\qquad\textbf{(C)}\ \frac{1}{2}(180-A)\qquad\textbf{(D)}\ 180-A\qquad\textbf{(E)}\ \180-2A</math>
<math> \textbf{(A)}\ \frac{1}{2}(90-A)\qquad\textbf{(B)}\ 90-A\qquad\textbf{(C)}\ \frac{1}{2}(180-A)\qquad\textbf{(D)}\ 180-A\qquad\textbf{(E)}\ 180-2A</math>


==Solution==
==Solution==
"Unsolved"
"Unsolved"

Revision as of 21:29, 9 November 2013

Problem

Let the bisectors of the exterior angles at $B$ and $C$ of triangle $ABC$ meet at D$.$ Then, if all measurements are in degrees, angle $BDC$ equals:

$\textbf{(A)}\ \frac{1}{2}(90-A)\qquad\textbf{(B)}\ 90-A\qquad\textbf{(C)}\ \frac{1}{2}(180-A)\qquad\textbf{(D)}\ 180-A\qquad\textbf{(E)}\ 180-2A$

Solution

"Unsolved"