Art of Problem Solving
During AMC 10A/12A testing, the AoPS Wiki is in read-only mode and no edits can be made.

2011 IMO Problems/Problem 3: Difference between revisions

V Enhance (talk | contribs)
m LaTeX-ify
DANCH (talk | contribs)
mNo edit summary
Line 1: Line 1:
Let <math>f: \mathbb R \to \mathbb R</math> be a real-valued function defined on the set of real numbers that satisfies <cmath> f(x + y) \le yf(x) + f(f(x)) </cmath> for all real numbers <math>x</math> and <math>y</math>. Prove that <math>f(x) = 0</math> for all <math>x \le 0</math>.
Let <math>f: \mathbb R \to \mathbb R</math> be a real-valued function defined on the set of real numbers that satisfies <cmath> f(x + y) \le yf(x) + f(f(x)) </cmath> for all real numbers <math>x</math> and <math>y</math>. Prove that <math>f(x) = 0</math> for all <math>x \le 0</math>.
==Solution==
{{solution}}

Revision as of 23:05, 10 October 2013

Let $f: \mathbb R \to \mathbb R$ be a real-valued function defined on the set of real numbers that satisfies \[f(x + y) \le yf(x) + f(f(x))\] for all real numbers $x$ and $y$. Prove that $f(x) = 0$ for all $x \le 0$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.