2011 AMC 10B Problems/Problem 23: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
== | ==Solution== | ||
'''Solution 1:''' | |||
Since <math>2011 \equiv 11 \pmod{1000},</math> we know that <math>2011^{2011} \equiv 11^{2011} \pmod{1000}.</math> | |||
To compute this, we use a clever application of the [[binomial theorem]]. | |||
< | <cmath>\begin{aligned} 11^{2011} &= (1+10)^{2011} \\ &= 1 + \dbinom{2011}{1} \cdot 10 + \dbinom{2011}{2} \cdot 10^2 + \cdots \end{aligned}</cmath> | ||
In all of the other terms, the power of <math>10</math> is greater than <math>3</math> and so is equivalent to <math>0</math> modulo <math>1000,</math> which means we can ignore it. We have: | |||
<cmath>\begin{aligned}11^{2011} &= 1 + 2011\cdot 10 + \dfrac{2011 \cdot 2010}{2} \cdot 100 \\ &\equiv 1+20110 + \dfrac{11\cdot 10}{2} \cdot 100\\ &= 1 + 20110 + 5500\\ &\equiv 1 + 110 + 500\\&=611 \pmod{1000} \end{aligned}</cmath> | |||
Therefore, the hundreds digit is <math>\boxed{\textbf{(D) } 6}.</math> | |||
'''Solution 2:''' | |||
< | We need to compute <math>2011^{2011} \pmod{1000}.</math> By the Chinese Remainder Theorem, it suffices to compute <math>2011^{2011} \pmod{8}</math> and <math>2011^{2011} \pmod{125}.</math> | ||
< | |||
In modulo <math>8,</math> we have <math>2011^4 \equiv 1 \pmod{8}</math> by [[Euler's_Totient_Theorem| Euler's Theorem]], and also <math>2011 \equiv 3 \pmod{8},</math> so we have <cmath>2011^{2011} = (2011^4)^{502} \cdot 2011^3 \equiv 1^{502} \cdot 3^3 \equiv 3 \pmod{8}.</cmath> | |||
== | In modulo <math>125,</math> we have <math>2011^{100} \equiv 1 \pmod{125}</math> by Euler's Theorem, and also <math>2011 \equiv 11 \pmod{125}.</math> Therefore, we have <cmath>\begin{aligned} 2011^{2011} &= (2011^{100})^{20} \cdot 2011^{11} \\ &\equiv 1^{20} \cdot 11^{11} \\ &= 121^5 \cdot 11 \\ &= (-4)^5 \cdot 11 = -1024 \cdot 11 \\ &\equiv -24 \cdot 11 = -264 \\ &\equiv 111 \pmod{125}. \end{aligned} </cmath> | ||
{ | After finding the solution <math>2011^{2011} \equiv 611 \pmod{1000},</math> we conclude it is the only one by the Chinese Remainder Theorem. Thus, the hundreds digit is <math>\boxed{\textbf{(D) } 6}.</math> | ||
{{ | |||
Revision as of 14:50, 17 August 2013
Solution
Solution 1:
Since
we know that
To compute this, we use a clever application of the binomial theorem.
\begin{aligned} 11^{2011} &= (1+10)^{2011} \\ &= 1 + \dbinom{2011}{1} \cdot 10 + \dbinom{2011}{2} \cdot 10^2 + \cdots \end{aligned} (Error compiling LaTeX. Unknown error_msg)
In all of the other terms, the power of
is greater than
and so is equivalent to
modulo
which means we can ignore it. We have:
\begin{aligned}11^{2011} &= 1 + 2011\cdot 10 + \dfrac{2011 \cdot 2010}{2} \cdot 100 \\ &\equiv 1+20110 + \dfrac{11\cdot 10}{2} \cdot 100\\ &= 1 + 20110 + 5500\\ &\equiv 1 + 110 + 500\\&=611 \pmod{1000} \end{aligned} (Error compiling LaTeX. Unknown error_msg)
Therefore, the hundreds digit is
Solution 2:
We need to compute
By the Chinese Remainder Theorem, it suffices to compute
and
In modulo
we have
by Euler's Theorem, and also
so we have
In modulo
we have
by Euler's Theorem, and also
Therefore, we have
\begin{aligned} 2011^{2011} &= (2011^{100})^{20} \cdot 2011^{11} \\ &\equiv 1^{20} \cdot 11^{11} \\ &= 121^5 \cdot 11 \\ &= (-4)^5 \cdot 11 = -1024 \cdot 11 \\ &\equiv -24 \cdot 11 = -264 \\ &\equiv 111 \pmod{125}. \end{aligned} (Error compiling LaTeX. Unknown error_msg)
After finding the solution
we conclude it is the only one by the Chinese Remainder Theorem. Thus, the hundreds digit is