2011 AMC 12B Problems/Problem 21: Difference between revisions
No edit summary |
|||
| Line 33: | Line 33: | ||
[[Category:Introductory Algebra Problems]] | [[Category:Introductory Algebra Problems]] | ||
{{MAA Notice}} | |||
Revision as of 10:04, 4 July 2013
Problem
The arithmetic mean of two distinct positive integers
and
is a two-digit integer. The geometric mean of
and
is obtained by reversing the digits of the arithmetic mean. What is
?
Solution
Answer: (D)
for some
,
.
Note that in order for x-y to be integer,
has to be
for some perfect square
. Since
is at most
,
or
If
,
, if
,
. In AMC, we are done. Otherwise, we need to show that
is impossible.
->
, or
or
and
,
,
respectively. And since
,
,
, but there is no integer solution for
,
.
See also
| 2011 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 20 |
Followed by Problem 22 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing