2013 AIME I Problems/Problem 7: Difference between revisions
| Line 9: | Line 9: | ||
900 = <math>\frac{1}{2}</math>((10 + <math>\sqrt{(x/2)^2 + 64}</math> + <math>\sqrt{(x/2)^2 + 36}</math>)/2)((10 + <math>\sqrt{(x/2)^2 + 64}</math> + <math>\sqrt{(x/2)^2 + 36}</math>)/2 - 10)((10 + <math>\sqrt{(x/2)^2 + 64}</math> + <math>\sqrt{(x/2)^2 + 36}</math>)/2 - <math>\sqrt{(x/2)^2 + 64}</math>)((10 + <math>\sqrt{(x/2)^2 + 64}</math> + <math>\sqrt{(x/2)^2 + 36}</math>)/2 - <math>\sqrt{(x/2)^2 + 36}</math>). | 900 = <math>\frac{1}{2}</math>((10 + <math>\sqrt{(x/2)^2 + 64}</math> + <math>\sqrt{(x/2)^2 + 36}</math>)/2)((10 + <math>\sqrt{(x/2)^2 + 64}</math> + <math>\sqrt{(x/2)^2 + 36}</math>)/2 - 10)((10 + <math>\sqrt{(x/2)^2 + 64}</math> + <math>\sqrt{(x/2)^2 + 36}</math>)/2 - <math>\sqrt{(x/2)^2 + 64}</math>)((10 + <math>\sqrt{(x/2)^2 + 64}</math> + <math>\sqrt{(x/2)^2 + 36}</math>)/2 - <math>\sqrt{(x/2)^2 + 36}</math>). | ||
Solving, we get <math>\boxed{041}</math> | Solving, we get <math>\boxed{041}</math>. | ||
== See also == | == See also == | ||
{{AIME box|year=2013|n=I|num-b=6|num-a=8}} | {{AIME box|year=2013|n=I|num-b=6|num-a=8}} | ||
Revision as of 17:12, 18 March 2013
Problem 7
A rectangular box has width
inches, length
inches, and height
inches, where
and
are relatively prime positive integers. Three faces of the box meet at a corner of the box. The center points of those three faces are the vertices of a triangle with an area of
square inches. Find
.
Solution
After using the pythagorean formula three times, we can quickly see that the sides of the triangle are 10,
, and
. Therefore, we can use Heron's formula to set up an equation for the area of the triangle.
The semi perimeter is (10 +
+
)/2
900 =
((10 +
+
)/2)((10 +
+
)/2 - 10)((10 +
+
)/2 -
)((10 +
+
)/2 -
).
Solving, we get
.
See also
| 2013 AIME I (Problems • Answer Key • Resources) | ||
| Preceded by Problem 6 |
Followed by Problem 8 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||