2013 AMC 10B Problems/Problem 22: Difference between revisions
No edit summary |
|||
| Line 4: | Line 4: | ||
<math> \textbf{(A)}\ 384 \qquad\textbf{(B)}\ 576 \qquad\textbf{(C)}\ 1152 \qquad\textbf{(D)}\ 1680 \qquad\textbf{(E)}\ 3456 </math> | <math> \textbf{(A)}\ 384 \qquad\textbf{(B)}\ 576 \qquad\textbf{(C)}\ 1152 \qquad\textbf{(D)}\ 1680 \qquad\textbf{(E)}\ 3456 </math> | ||
<asy> | |||
pair A,B,C,D,E,F,G,H,J; | |||
A=(20,20(2+sqrt(2))); | |||
B=(20(1+sqrt(2)),20(2+sqrt(2))); | |||
C=(20(2+sqrt(2)),20(1+sqrt(2))); | |||
D=(20(2+sqrt(2)),20); | |||
E=(20(1+sqrt(2)),0); | |||
F=(20,0); | |||
G=(0,20); | |||
H=(0,20(1+sqrt(2))); | |||
J=(10(2+sqrt(2)),10(2+sqrt(2))); | |||
draw(A--B); | |||
draw(B--C); | |||
draw(C--D); | |||
draw(D--E); | |||
draw(E--F); | |||
draw(F--G); | |||
draw(G--H); | |||
draw(H--A); | |||
dot(A); | |||
dot(B); | |||
dot(C); | |||
dot(D); | |||
dot(E); | |||
dot(F); | |||
dot(G); | |||
dot(H); | |||
dot(J); | |||
label("A",A,NNW); | |||
label("B",B,NNE); | |||
label("C",C,ENE); | |||
label("D",D,ESE); | |||
label("E",E,SSE); | |||
label("F",F,SSW); | |||
label("G",G,WSW); | |||
label("H",H,WNW); | |||
label("J",J,SE); | |||
</asy> | |||
==Solution== | ==Solution== | ||
Revision as of 17:18, 21 February 2013
Problem
The regular octagon
has its center at
. Each of the vertices and the center are to be associated with one of the digits
through
, with each digit used once, in such a way that the sums of the numbers on the lines
,
,
, and
are all equal. In how many ways can this be done?
Solution
First of all, note that
must be
,
, or
to preserve symmetry. We also notice that
.
WLOG assume that
. Thus the pairs of vertices must be
and
,
and
,
and
, and
and
. There are
ways to assign these to the vertices. Furthermore, there are
ways to switch them (i.e. do
instead of
).
Thus, there are
ways for each possible J value. There are
possible J values that still preserve symmetry: