2008 AMC 8 Problems/Problem 23: Difference between revisions
No edit summary |
No edit summary |
||
| Line 19: | Line 19: | ||
</asy> | </asy> | ||
<math> \textbf{(A)}\ \frac{1}{6}\qquad\textbf{(B)}\ \frac{2}{9}\qquad\textbf{(C)}\ \frac{5}{18}\qquad\textbf{(D)}\ \frac{1}{3}\qquad\textbf{(E)}\ \frac{7}{20} </math> | <math> \textbf{(A)}\ \frac{1}{6}\qquad\textbf{(B)}\ \frac{2}{9}\qquad\textbf{(C)}\ \frac{5}{18}\qquad\textbf{(D)}\ \frac{1}{3}\qquad\textbf{(E)}\ \frac{7}{20} </math> | ||
==Solution== | |||
The area of <math>\triangle BFD</math> is the area of square <math>ABCE</math> subtracted by the the area of the three triangles around it. Arbitrarily assign the side length of the square to be <math>6</math>. | |||
<asy> | |||
size((100)); | |||
pair A=(0,9), B=(9,9), C=(9,0), D=(3,0), E=(0,0), F=(0,3); | |||
pair[] ps={A,B,C,D,E,F}; | |||
dot(ps); | |||
draw(A--B--C--E--cycle); | |||
draw(B--F--D--cycle); | |||
label("$A$",A, NW); | |||
label("$B$",B, NE); | |||
label("$C$",C, SE); | |||
label("$D$",D, S); | |||
label("$E$",E, SW); | |||
label("$F$",F, W); | |||
label("$6$",A--B,N); | |||
label("$6$",(10,4.5),E); | |||
label("$4$",D--C,S); | |||
label("$2$",E--D,S); | |||
label("$2$",E--F,W); | |||
label("$4$",F--A,W); | |||
</asy> | |||
The ratio of the area of <math>\triangle BFD</math> to the area of <math>ABCE</math> is | |||
<cmath>\frac{36-12-12-2}{36} = \frac{10}{36} = \boxed{\textbf{(C)}\ \frac{5}{18}}</cmath> | |||
==See Also== | ==See Also== | ||
{{AMC8 box|year=2008|num-b=22|num-a=24}} | {{AMC8 box|year=2008|num-b=22|num-a=24}} | ||
Revision as of 03:07, 25 December 2012
Problem
In square
,
and
. What is the ratio of the area of
to the area of square
?
Solution
The area of
is the area of square
subtracted by the the area of the three triangles around it. Arbitrarily assign the side length of the square to be
.
The ratio of the area of
to the area of
is
See Also
| 2008 AMC 8 (Problems • Answer Key • Resources) | ||
| Preceded by Problem 22 |
Followed by Problem 24 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AJHSME/AMC 8 Problems and Solutions | ||