2004 AMC 8 Problems/Problem 8: Difference between revisions
Created page with "== Problem == Find the number of two-digit positive integers whose digits total <math>7</math>. <math> \mathrm{(A)\ 6 }\qquad\mathrm{(B)\ 7 }\qquad\mathrm{(C)\ 8 }\qquad\mathrm{..." |
No edit summary |
||
| Line 2: | Line 2: | ||
Find the number of two-digit positive integers whose digits total <math>7</math>. | Find the number of two-digit positive integers whose digits total <math>7</math>. | ||
<math> \ | <math> \textbf{(A)}\ 6\qquad\textbf{(B)}\ 7\qquad\textbf{(C)}\ 8\qquad\textbf{(D)}\ 9\qquad\textbf{(E)}\ 10</math> | ||
== Solution == | == Solution == | ||
The numbers are <math>16, 25, 34, 43, 52, 61, 70</math> which gives us a total of | The numbers are <math>16, 25, 34, 43, 52, 61, 70</math> which gives us a total of <math>\boxed{\textbf{(B)}\ 7}</math>. | ||
==See Also== | |||
{{AMC8 box|year=2004|num-b=7|num-a=9}} | |||
Revision as of 03:36, 24 December 2012
Problem
Find the number of two-digit positive integers whose digits total
.
Solution
The numbers are
which gives us a total of
.
See Also
| 2004 AMC 8 (Problems • Answer Key • Resources) | ||
| Preceded by Problem 7 |
Followed by Problem 9 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AJHSME/AMC 8 Problems and Solutions | ||