Art of Problem Solving
During AMC 10A/12A testing, the AoPS Wiki is in read-only mode and no edits can be made.

2007 AMC 8 Problems/Problem 18: Difference between revisions

No edit summary
No edit summary
Line 1: Line 1:
==Problem==
The product of the two <math>99</math>-digit numbers
<math>303,030,303,...,030,303</math> and <math>505,050,505,...,050,505</math>
has thousands digit <math>A</math> and units digit <math>B</math>. What is the sum of <math>A</math> and <math>B</math>?
<math>\mathrm{(A)}\ 3 \qquad \mathrm{(B)}\ 5 \qquad \mathrm{(C)}\ 6 \qquad \mathrm{(D)}\ 8 \qquad \mathrm{(E)}\ 10</math>
==Solution==
<math>303\times505=153015 </math>
<math>303\times505=153015 </math>


Line 6: Line 17:


Note that the ones and thousands digits are, added together, <math>8</math>. (and so on...) So the answer is <math> \boxed{D} </math> <math> (8) </math>.
Note that the ones and thousands digits are, added together, <math>8</math>. (and so on...) So the answer is <math> \boxed{D} </math> <math> (8) </math>.
==See Also==
{{AMC8 box|year=2007|num-b=17|num-a=19}}

Revision as of 22:47, 12 November 2012

Problem

The product of the two $99$-digit numbers

$303,030,303,...,030,303$ and $505,050,505,...,050,505$

has thousands digit $A$ and units digit $B$. What is the sum of $A$ and $B$?

$\mathrm{(A)}\ 3 \qquad \mathrm{(B)}\ 5 \qquad \mathrm{(C)}\ 6 \qquad \mathrm{(D)}\ 8 \qquad \mathrm{(E)}\ 10$

Solution

$303\times505=153015$

The ones digit plus thousands digit is $5+3=8$.

$30303\times50505=1530453015$

Note that the ones and thousands digits are, added together, $8$. (and so on...) So the answer is $\boxed{D}$ $(8)$.


See Also

2007 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions