2011 USAMO Problems/Problem 3: Difference between revisions
→Solutions: added solution 3 -- full characterization from here: http://www.artofproblemsolving.com/Forum/viewtopic.php?p=2256450#p2256450 |
|||
| Line 20: | Line 20: | ||
&=(r-t)(a'-b'+d'-e')+(s-t)(b'-c'+e'-f'). | &=(r-t)(a'-b'+d'-e')+(s-t)(b'-c'+e'-f'). | ||
\end{align*}</cmath> | \end{align*}</cmath> | ||
If <math>r-t=s-t=0</math>, then <math>P</math> must be similar to <math>P'</math> and the conclusion is obvious | If <math>r-t=s-t=0</math>, then <math>P</math> must be similar to <math>P'</math> and the conclusion is obvious. | ||
Alternatively, WLOG assume the <math>(A'C'E')</math> is the unit circle, and compute <math>b'=a'+c'-\frac{a'c'}{e'}</math>, etc. | Otherwise, since <math>a'-b'+d'-e'\ne0</math> and <math>b'-c'+e'-f'\ne0</math>, we must have <math>r-t\ne0</math> and <math>s-t\ne0</math>. Construct parallelograms <math>A'XE'D'</math> and <math>C'YD'E'</math>; if <math>U</math> is the reflection of <math>A'</math> over <math>B'X</math> and <math>V</math> is the reflection of <math>C'</math> over <math>D'Y</math>, then by simple angle chasing we can show that <math>\angle{UA'C'}=180^\circ-\angle{A'E'C'}</math> and <math>\angle{VC'A'}=180^\circ-\angle{C'E'A'}</math>. But <math>(r-t)(s-t)\ne0</math> means <math>u-a'=b'-a'+e'-d'</math> and <math>v-c'=b'-c'+e'-f'</math> must be linearly dependent (note that <math>A'B'=A'X</math> and <math>C'D'=C'V</math>), so we must have <math>\angle{UA'C'}+\angle{VC'A'}=180^\circ\implies \angle{A'E'C'}=90^\circ</math>. But then <math>C'D'\parallel A'F'</math>, which is impossible, so we're done. | ||
Alternatively (for the previous paragraph), WLOG assume the <math>(A'C'E')</math> is the unit circle, and compute <math>b'=a'+c'-\frac{a'c'}{e'}</math>, etc. | |||
===Solution 3=== | |||
We work in the complex plane to give (essentially) a complete characterization when we remove the condition that opposite sides are not parallel. | |||
WLOG assume <math>a,b,c</math> are on the unit circle. It suffices to show that <math>a,b,c</math> uniquely determine <math>d,e,f</math>, since we know that if we let <math>E</math> be the reflection of <math>B</math> over <math>AC</math>, <math>D</math> be the reflection of <math>A</math> over <math>CE</math>, and <math>F</math> be the reflection of <math>C</math> over <math>AE</math>, then <math>ABCDEF</math> satisfies the problem conditions. (*) | |||
It's easy to see with the given conditions that | |||
<cmath>\begin{align*} | |||
(a-b)(c-d)(e-f) &= (b-c)(d-e)(f-a) \Longleftrightarrow f=\frac{(a-b)(c-d)e+(c-b)(e-d)a}{(a-b)(c-d)+(c-b)(e-d)} \\ | |||
\frac{(e-a)(c-b)}{(a-b)(c-d)+(c-b)(e-d)} = \frac{f-e}{d-e} &= \left(\frac{c-b}{a-b}\right)^2 \overline{\left(\frac{a-b}{c-b}\right)} = \frac{c-b}{a-b}\cdot\frac{c}{a} \Longleftrightarrow d=\frac{c[(a-b)c+(c-b)e]+a(a-e)(a-b)}{c[(a-b)+(c-b)]} \\ | |||
\frac{(a-b)(c-d)+(c-b)(e-d)}{(a-e)(c-d)} = \frac{b-a}{f-a} &= \left(\frac{e-d}{c-d}\right)^2 \overline{\left(\frac{c-d}{e-d}\right)}. | |||
\end{align*}</cmath> | |||
Note that | |||
<cmath>\frac{e-d}{c-d}=\frac{(a-b)[c(e-c)+a(e-a)]}{c(c-e)(c-b)-a(a-e)(a-b)},</cmath> | |||
so plugging into the third equation we have | |||
<cmath>\begin{align*} | |||
\frac{a(a-b)(2b-a-c)}{c(c-e)(c-b)-a(a-e)(a-b)} | |||
&=\frac{(a-b)+(c-b)\frac{(a-b)[c(e-c)+a(e-a)]}{c(c-e)(c-b)-a(a-e)(a-b)}}{(a-e)}\\ | |||
&=\left(\frac{(a-b)[c(e-c)+a(e-a)]}{c(c-e)(c-b)-a(a-e)(a-b)}\right)^2\overline{\left(\frac{c(c-e)(c-b)-a(a-e)(a-b)}{(a-b)[c(e-c)+a(e-a)]}\right)}\\ | |||
&=\left(\frac{(a-b)[c(e-c)+a(e-a)]}{c(c-e)(c-b)-a(a-e)(a-b)}\right)^2\frac{\frac{1}{c}\left(\overline{e}-\frac{1}{c}\right)\frac{b-c}{bc}-\frac{1}{a}\left(\overline{e}-\frac{1}{a}\right)\frac{b-a}{ba}}{\frac{b-a}{ab}\left(\frac{1}{c}\left(\frac{1}{c}-\overline{e}\right)+\frac{1}{a}\left(\frac{1}{a}-\overline{e}\right)\right)}\\ | |||
&=\left(\frac{(a-b)[c(e-c)+a(e-a)]}{c(c-e)(c-b)-a(a-e)(a-b)}\right)^2\frac{c^3(a\overline{e}-1)(a-b)-a^3(c\overline{e}-1)(c-b)}{c(a-b)[a^2(c\overline{e}-1)+c^2(a\overline{e}-1)]}\\ | |||
&=\frac{(a-b)[c(e-c)+a(e-a)]^2}{[c(c-e)(c-b)-a(a-e)(a-b)]^2}\frac{c^3(a\overline{e}-1)(a-b)-a^3(c\overline{e}-1)(c-b)}{c[a^2(c\overline{e}-1)+c^2(a\overline{e}-1)]}. | |||
\end{align*}</cmath> | |||
Simplifying, this becomes | |||
<cmath>\begin{align*} | |||
&ac(2b-a-c)[c(c-e)(c-b)-a(a-e)(a-b)][a^2(c\overline{e}-1)+c^2(a\overline{e}-1)]\\ | |||
&=[c(e-c)+a(e-a)]^2[c^3(a\overline{e}-1)(a-b)-a^3(c\overline{e}-1)(c-b)]. | |||
\end{align*}</cmath> | |||
Of course, we can also "conjugate" this equation -- a nice way to do this is to note that if | |||
<cmath>x=\frac{(a-b)[c(e-c)+a(e-a)]}{c(c-e)(c-b)-a(a-e)(a-b)},</cmath> | |||
then | |||
<cmath>\frac{a(2b-a-c)}{c(e-c)+a(e-a)}=\frac{x}{\overline{x}}=\overline{\left(\frac{c(e-c)+a(e-a)}{a(2b-a-c)}\right)}=\frac{\frac{1}{c}\left(\overline{e}-\frac{1}{c}\right)+\frac{1}{a}\left(\overline{e}-\frac{1}{a}\right)}{\frac{1}{a}\left(\frac{2}{b}-\frac{1}{a}-\frac{1}{c}\right)},</cmath> | |||
whence | |||
<cmath>ac(2b-a-c)[2ac-b(a+c)]=b[c(e-c)+a(e-a)][a^2(c\overline{e}-1)+c^2(a\overline{e}-1)].</cmath> | |||
If <math>a+c\ne 0</math>, then eliminating <math>\overline{e}</math>, we get | |||
<cmath>e\in\left\{a+c-\frac{ac}{b},a+\frac{2c(c-b)}{a+c},c+\frac{2a(a-b)}{a+c}\right\}.</cmath> | |||
The first case corresponds to (*) (since <math>a,b,c,e</math> uniquely determine <math>d</math> and <math>f</math>), the second corresponds to <math>AB\parallel DE</math> (or equivalently, since <math>AB=DE</math>, <math>a-b=e-d</math>), and by symmetry, the third corresponds to <math>CB\parallel FE</math>. | |||
Otherwise, if <math>c=-a</math>, then we easily find <math>b^2e=a^4\overline{e}</math> from the first of the two equations in <math>e,\overline{e}</math> (we actually don't need this, but it tells us that the locus of working <math>e</math> is a line through the origin). It's easy to compute <math>d=e+\frac{a(a-b)}{b}</math> and <math>f=e+\frac{a(a+b)}{b}</math>, so <math>a-c=2a=f-d\implies c-d=a-f\implies CD\parallel AF</math>, and we're done. | |||
'''Comment.''' It appears that taking <math>(ABC)</math> the unit circle is nicer than, say <math>e=0</math> or <math>(ACE)</math> the unit circle (which may not even be reasonably tractable). | |||
==See Also== | ==See Also== | ||
{{USAMO newbox|year=2011|num-b=2|num-a=4}} | {{USAMO newbox|year=2011|num-b=2|num-a=4}} | ||
Revision as of 15:35, 29 October 2012
In hexagon
, which is nonconvex but not self-intersecting, no pair of opposite sides are parallel. The internal angles satisfy
,
, and
. Furthermore
,
, and
. Prove that diagonals
,
, and
are concurrent.
Solutions
Solution 1
Let
,
, and
,
,
,
,
intersect
at
,
intersect
at
, and
intersect
at
. Define the vectors:
Clearly,
.
Note that
. By sliding the vectors
and
to the vectors
and
respectively, then
. As
is isosceles with
, the base angles are both
. Thus,
. Similarly,
and
.
Next we will find the angles between
,
, and
. As
, the angle between the vectors
and
is
. Similarly, the angle between
and
is
, and the angle between
and
is
. Thus, the angle between
and
is
, or just
in the other direction if we take it modulo
. Similarly, the angle between
and
is
, and the angle between
and
is
.
And since
, we can arrange the three vectors to form a triangle, so the triangle with sides of lengths
,
, and
has opposite angles of
,
, and
, respectively. So by the law of sines:
and the triangle with sides of length
,
, and
has corrosponding angles of
,
, and
. But then triangles
,
, and
. So
,
, and
, and
,
, and
are the reflections of the vertices of triangle
about the sides. So
,
, and
concur at the orthocenter of triangle
.
Solution 2
We work in the complex plane, where lowercase letters denote point affixes. Let
denote hexagon
. Since
, the condition
is equivalent to
.
Construct a "phantom hexagon"
as follows: let
be a triangle with
,
, and
(this is possible since
by the angle conditions), and reflect
over its sides to get points
, respectively. By rotation and reflection if necessary, we assume
and
have the same orientation (clockwise or counterclockwise), i.e.
. It's easy to verify that
for
and opposite sides of
have equal lengths. As the corresponding sides of
and
must then be parallel, there exist positive reals
such that
,
, and
. But then
, etc., so
If
, then
must be similar to
and the conclusion is obvious.
Otherwise, since
and
, we must have
and
. Construct parallelograms
and
; if
is the reflection of
over
and
is the reflection of
over
, then by simple angle chasing we can show that
and
. But
means
and
must be linearly dependent (note that
and
), so we must have
. But then
, which is impossible, so we're done.
Alternatively (for the previous paragraph), WLOG assume the
is the unit circle, and compute
, etc.
Solution 3
We work in the complex plane to give (essentially) a complete characterization when we remove the condition that opposite sides are not parallel.
WLOG assume
are on the unit circle. It suffices to show that
uniquely determine
, since we know that if we let
be the reflection of
over
,
be the reflection of
over
, and
be the reflection of
over
, then
satisfies the problem conditions. (*)
It's easy to see with the given conditions that
Note that
so plugging into the third equation we have
Simplifying, this becomes
Of course, we can also "conjugate" this equation -- a nice way to do this is to note that if
then
whence
If
, then eliminating
, we get
The first case corresponds to (*) (since
uniquely determine
and
), the second corresponds to
(or equivalently, since
,
), and by symmetry, the third corresponds to
.
Otherwise, if
, then we easily find
from the first of the two equations in
(we actually don't need this, but it tells us that the locus of working
is a line through the origin). It's easy to compute
and
, so
, and we're done.
Comment. It appears that taking
the unit circle is nicer than, say
or
the unit circle (which may not even be reasonably tractable).
See Also
| 2011 USAMO (Problems • Resources) | ||
| Preceded by Problem 2 |
Followed by Problem 4 | |
| 1 • 2 • 3 • 4 • 5 • 6 | ||
| All USAMO Problems and Solutions | ||