Art of Problem Solving
During AMC 10A/12A testing, the AoPS Wiki is in read-only mode and no edits can be made.

2009 IMO Problems/Problem 1: Difference between revisions

Bugi (talk | contribs)
mNo edit summary
Line 4: Line 4:


''Author: Ross Atkins, Australia''
''Author: Ross Atkins, Australia''
--[[User:Bugi|Bugi]] 10:23, 23 July 2009 (UTC)Bugi


== Solution ==
== Solution ==

Revision as of 12:03, 10 July 2012

Problem

Let $n$ be a positive integer and let $a_1,\ldots,a_k (k\ge2)$ be distinct integers in the set $\{1,\ldots,n\}$ such that $n$ divides $a_i(a_{i+1}-1)$ for $i=1,\ldots,k-1$. Prove that $n$ doesn't divide $a_k(a_1-1)$.

Author: Ross Atkins, Australia

Solution

Let $n=pq$ such that $p\mid a_1$ and $q\mid a_2-1$. Suppose $n$ divides $a_k(a_1-1)$. Note $q\mid a_2-1$ implies $(q,a_2)=1$ and hence $q\mid a_3-1$. Similarly one has $q\mid a_i-1$ for all $i$'s, in particular, $p\mid a_1$ and $q\mid a_1-1$ force $(p,q)=1$. Now $(p,a_1-1)=1$ gives $p\mid a_k$, similarly one has $p\mid a_i$ for all $i$'s, that is $a_i$'s satisfy $p\mid a_i$ and $q\mid a_i-1$, but there should be at most one such integer satisfies them within the range of $1,2,\ldots,n$ for $n=pq$ and $(p,q)=1$. A contradiction!!!