Art of Problem Solving

1950 AHSME Problems/Problem 3: Difference between revisions

Line 9: Line 9:
<math> x^{2}-2x+\dfrac{5}{4}=0.</math>
<math> x^{2}-2x+\dfrac{5}{4}=0.</math>


Using Vieta's formulas, we find that the roots add to <math>2\ \text{or}\ \boxed{\textbf{(E)} \text{None of these}}</math>.
Using Vieta's formulas, we find that the roots add to <math>2\ \text{or}\ \boxed{\textbf{(E)}\ \text{None of these}}</math>.


==See Also==
==See Also==


{{AHSME box|year=1950|num-b=2|num-a=4}}
{{AHSME box|year=1950|num-b=2|num-a=4}}

Revision as of 13:14, 19 February 2012

Problem

The sum of the roots of the equation $4x^{2}+5-8x=0$ is equal to:

$\textbf{(A)}\ 8\qquad\textbf{(B)}\ -5\qquad\textbf{(C)}\ -\frac{5}{4}\qquad\textbf{(D)}\ -2\qquad\textbf{(E)}\ \text{None of these}$

Solution

We can divide by 4 to get: $x^{2}-2x+\dfrac{5}{4}=0.$

Using Vieta's formulas, we find that the roots add to $2\ \text{or}\ \boxed{\textbf{(E)}\ \text{None of these}}$.

See Also

1950 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions