2008 AMC 12B Problems/Problem 9: Difference between revisions
No edit summary |
No edit summary |
||
| Line 4: | Line 4: | ||
<math>\textbf{(A)}\ \sqrt {10} \qquad \textbf{(B)}\ \frac {7}{2} \qquad \textbf{(C)}\ \sqrt {14} \qquad \textbf{(D)}\ \sqrt {15} \qquad \textbf{(E)}\ 4</math> | <math>\textbf{(A)}\ \sqrt {10} \qquad \textbf{(B)}\ \frac {7}{2} \qquad \textbf{(C)}\ \sqrt {14} \qquad \textbf{(D)}\ \sqrt {15} \qquad \textbf{(E)}\ 4</math> | ||
== | ==Solutions== | ||
=== | ===Solution 1=== | ||
Let <math>\alpha</math> be the angle that subtends the arc AB. By the law of cosines, | Let <math>\alpha</math> be the angle that subtends the arc <math>AB</math>. By the law of cosines, | ||
<math>6^2=5^2+5^2-2 | <math>6^2=5^2+5^2-2\cdot 5\cdot 5\cos(\alpha)</math> implies <math>\cos(\alpha) = 7/25</math>. | ||
<math>\alpha = cos^{- | The [[Trigonometric_identities#Half_Angle_Identities | half-angle formula]] says that | ||
<math>\cos(\alpha/2) = \frac{\sqrt{1+\cos(\alpha)}}{2} = \sqrt{\frac{32/25}{2}} = \sqrt{\frac{16}{25}} = \frac{4}{5}</math>. The law of cosines tells us <math>AC = \sqrt{5^2+5^2-2*5\cdot 5\cdot \frac{4}{5}} = \sqrt{50-50\frac{4}{5}} = \sqrt{10}</math>, which is answer choice <math>\boxed{\text{A}}</math>. | |||
===Solution 2=== | |||
< | {{asy image| | ||
<math> | <asy> | ||
defaultpen(fontsize(8)); | |||
<math> | pair A=(-3,4), B=(3,4), C=(0,5), D=(0,4), O=(0,0); | ||
D(Circle(O,5)); | |||
<math> | D(O--B--A--O--C);D(A--C--B); | ||
label("$A$",A,(-1,1));label("$O$",O,(0,-1));label("$B$",B,(1,1));label("$C$",C,(0,1));label("$D$",D,(-1,-1)); | |||
</asy> | |||
|right|Figure 1 | |||
}} | |||
<math>m\angle | Define <math>D</math> as the midpoint of line segment <math>\overline{AB}</math>, and <math>O</math> the center of the circle. Then <math>O</math>, <math>C</math>, and <math>D</math> are collinear, and since <math>D</math> is the midpoint of <math>AB</math>, <math>m\angle ODA=90\deg</math> and so <math>OD=\sqrt{5^2-3^2}=4</math>. Since <math>OD=4</math>, <math>CD=5-4=1</math>, and so <math>AC=\sqrt{3^2+1^2}=\sqrt{10} \rightarrow \boxed{\text{A}}</math>. | ||
<math> | |||
Since | |||
<math> | |||
<math>AC=\sqrt{3^2+1^2}=\sqrt{10} \rightarrow A</math> | |||
==See Also== | ==See Also== | ||
{{AMC12 box|year=2008|ab=B|num-b=8|num-a=10}} | {{AMC12 box|year=2008|ab=B|num-b=8|num-a=10}} | ||
Revision as of 23:21, 14 August 2011
Problem 9
Points
and
are on a circle of radius
and
. Point
is the midpoint of the minor arc
. What is the length of the line segment
?
Solutions
Solution 1
Let
be the angle that subtends the arc
. By the law of cosines,
implies
.
The half-angle formula says that
. The law of cosines tells us
, which is answer choice
.
Solution 2
|
|
| Figure 1 |
Define
as the midpoint of line segment
, and
the center of the circle. Then
,
, and
are collinear, and since
is the midpoint of
,
and so
. Since
,
, and so
.
See Also
| 2008 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 8 |
Followed by Problem 10 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |