Art of Problem Solving
During AMC 10A/12A testing, the AoPS Wiki is in read-only mode and no edits can be made.

1997 USAMO Problems/Problem 5: Difference between revisions

mNo edit summary
Line 1: Line 1:
== Problem ==
Prove that, for all positive real numbers <math>a, b, c,</math>


<math>(a^3+b^3+abc)^{-1}+(b^3+c^3+abc)^{-1}+(a^3+c^3+abc)^{-1}\le(abc)^{-1}</math>.
== Solution ==

Revision as of 13:09, 5 July 2011

Problem

Prove that, for all positive real numbers $a, b, c,$

$(a^3+b^3+abc)^{-1}+(b^3+c^3+abc)^{-1}+(a^3+c^3+abc)^{-1}\le(abc)^{-1}$.

Solution