Art of Problem Solving

2011 AMC 12B Problems/Problem 16: Difference between revisions

Created page with "==Problem== Rhombus <math>ABCD</math> has side length <math>2</math> and <math>\angle B = 120^{\circ}</math>. Region <math>R</math> consists of all points inside of the rhombus t..."
 
 
Line 1: Line 1:
==Problem==
#REDIRECT [[2011 AMC 10B Problems/Problem 20]]
Rhombus <math>ABCD</math> has side length <math>2</math> and <math>\angle B = 120^{\circ}</math>. Region <math>R</math> consists of all points inside of the rhombus that are closer to vertex <math>B</math> than any of the other three vertices. What is the area of <math>R</math>?
 
<math>\textbf{(A)}\ \frac{\sqrt{3}}{3} \qquad \textbf{(B)}\ \frac{\sqrt{3}}{2} \qquad \textbf{(C)}\ \frac{2\sqrt{3}}{3} \qquad \textbf{(D)}\ 1 + \frac{\sqrt{3}}{3} \qquad \textbf{(E)}\ 2</math>
 
==Solution==
{{solution}}
 
== See also ==
{{AMC12 box|year=2011|num-b=15|num-a=17|ab=B}}

Latest revision as of 16:21, 5 June 2011