Art of Problem Solving

1958 AHSME Problems/Problem 2: Difference between revisions

Added page
 
m Fixed $LaTeX$
Line 17: Line 17:
<math> \frac{xy}{y-x}=z</math>
<math> \frac{xy}{y-x}=z</math>


The answer is therefore <math>mathbf{(D)}</math>.  
The answer is therefore <math>\boxed{\text{D}}</math>.


==See also==
==See also==


{{AHSME box|year=1958|num-b=1|num-a=3}}
{{AHSME box|year=1958|num-b=1|num-a=3}}

Revision as of 11:15, 3 June 2011

Problem

If $\frac {1}{x} - \frac {1}{y} = \frac {1}{z}$, then $z$ equals:

$\textbf{(A)}\ y - x\qquad \textbf{(B)}\ x - y\qquad \textbf{(C)}\ \frac {y - x}{xy}\qquad \textbf{(D)}\ \frac {xy}{y - x}\qquad \textbf{(E)}\ \frac {xy}{x - y}$

Solution

$\frac{1}{x}-\frac{1}{y}=\frac{1}{z}$

$\frac{y}{xy}-\frac{x}{xy}=\frac{1}{z}$

$\frac{y-x}{xy}=\frac{1}{z}$

$\frac{1}{\frac{y-x}{xy}}=\frac{1}{\frac{1}{z}}$

$\frac{xy}{y-x}=z$

The answer is therefore $\boxed{\text{D}}$.

See also

1958 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions