Art of Problem Solving

1999 AHSME Problems/Problem 12: Difference between revisions

Added page
 
Formatting, removed silly $LaTeX$ label
Line 1: Line 1:
What is the maximum number of points of intersection of the graphs of two different fourth degree polynomial functions <math> y \equal{} p(x)</math> and <math> y \equal{} q(x)</math>, each with leading coefficient <math> 1</math>?
{{solutions}}
 
==Problem==
 
What is the maximum number of points of intersection of the graphs of two different fourth degree polynomial functions <math> y \equal{} p(x)</math> and <math> y \equal{} q(x)</math>, each with leading coefficient 1?


<math> \textbf{(A)}\ 1 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ 8</math>
<math> \textbf{(A)}\ 1 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ 8</math>
==See Also==
{{AHSME box|year=1999|num-b=10|num-a=12}}

Revision as of 19:32, 2 June 2011

Template:Solutions

Problem

What is the maximum number of points of intersection of the graphs of two different fourth degree polynomial functions $y \equal{} p(x)$ (Error compiling LaTeX. Unknown error_msg) and $y \equal{} q(x)$ (Error compiling LaTeX. Unknown error_msg), each with leading coefficient 1?

$\textbf{(A)}\ 1 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ 8$

See Also

1999 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions