Art of Problem Solving

2011 AMC 10B Problems/Problem 1: Difference between revisions

No edit summary
Gina (talk | contribs)
No edit summary
Line 1: Line 1:
== Problem 1 ==
What is <cmath>\dfrac{2+4+6}{1+3+5} - \dfrac{1+3+5}{2+4+6} ?</cmath>
<math> \textbf{(A)}\ -1\qquad\textbf{(B)}\ \frac{5}{36}\qquad\textbf{(C)}\ \frac{7}{12}\qquad\textbf{(D)}\ \frac{147}{60}\qquad\textbf{(E)}\ \frac{43}{3} </math>
== Solution ==
First, simplify the fractions.
First, simplify the fractions.


<math>\dfrac{2+4+6}{1+3+5} - \dfrac{1+3+5}{2+4+6} = \dfrac{12}{9} - \dfrac{9}{12}</math>
<math>\dfrac{2+4+6}{1+3+5} - \dfrac{1+3+5}{2+4+6} = \dfrac{12}{9} - \dfrac{9}{12}</math>


<math>\dfrac{12}{9} - \dfrac{9}{12} = \dfrac{48}{36} - \dfrac{27}{36} = \dfrac{21}{36} = \dfrac{7}{12}</math>
<math>\dfrac{12}{9} - \dfrac{9}{12} = \dfrac{48}{36} - \dfrac{27}{36} = \dfrac{21}{36} = \boxed{\dfrac{7}{12} \textbf{(C)}}</math>
 
<math>(C) \dfrac{7}{12}</math>

Revision as of 17:53, 25 May 2011

Problem 1

What is \[\dfrac{2+4+6}{1+3+5} - \dfrac{1+3+5}{2+4+6} ?\]

$\textbf{(A)}\ -1\qquad\textbf{(B)}\ \frac{5}{36}\qquad\textbf{(C)}\ \frac{7}{12}\qquad\textbf{(D)}\ \frac{147}{60}\qquad\textbf{(E)}\ \frac{43}{3}$

Solution

First, simplify the fractions.

$\dfrac{2+4+6}{1+3+5} - \dfrac{1+3+5}{2+4+6} = \dfrac{12}{9} - \dfrac{9}{12}$

$\dfrac{12}{9} - \dfrac{9}{12} = \dfrac{48}{36} - \dfrac{27}{36} = \dfrac{21}{36} = \boxed{\dfrac{7}{12} \textbf{(C)}}$