1993 AHSME Problems: Difference between revisions
No edit summary |
|||
| Line 2: | Line 2: | ||
For integers <math>a, b</math> and <math>c</math>, define <math>\boxed a,b,c</math> to mean <math>a^b-b^c+c^a</math>. Then <math>\boxed 1,-1,2</math> equals | For integers <math>a, b</math> and <math>c</math>, define <math>\boxed{a,b,c}</math> to mean <math>a^b-b^c+c^a</math>. Then <math>\boxed{1,-1,2}</math> equals | ||
<math>\text{(A)} \ -4 \qquad \text{(B)} \ -2 \qquad \text{(C)} \ 0 \qquad \text{(D)} \ 2 \qquad \texxt{(E)} \4</math> | <math>\text{(A)} \ -4 \qquad \text{(B)} \ -2 \qquad \text{(C)} \ 0 \qquad \text{(D)} \ 2 \qquad \texxt{(E)} \4</math> | ||
Revision as of 20:14, 9 February 2011
Problem 1
For integers
and
, define
to mean
. Then
equals
$\text{(A)} \ -4 \qquad \text{(B)} \ -2 \qquad \text{(C)} \ 0 \qquad \text{(D)} \ 2 \qquad \texxt{(E)} \4$ (Error compiling LaTeX. Unknown error_msg)
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22