Art of Problem Solving

2010 AMC 10B Problems/Problem 13: Difference between revisions

Jexmudder (talk | contribs)
Jexmudder (talk | contribs)
Line 18: Line 18:


<math>
<math>
2x-|60-2x|=x,
2x-|60-2x|=x
</math>
 
<math>
x=|60-2x|
x=|60-2x|
</math>
</math>
Line 25: Line 28:
   
   
<math>
<math>
x=60-2x,
x=60-2x
3x=60,
</math>
 
<math>
3x=60
</math>
 
<math>
x=20
x=20
</math>
</math>
Line 33: Line 42:


<math>
<math>
-x=60-2x,
-x=60-2x
</math>
 
<math>
x=60
x=60
</math>
</math>
Line 40: Line 52:


<math>
<math>
2x-|60-2x|=-x,
2x-|60-2x|=-x
</math>
 
<math>
3x=|60-2x|
3x=|60-2x|
</math>
</math>
Line 47: Line 62:


<math>
<math>
3x=60-2x,
3x=60-2x
5x=60,
</math>
 
<math>
5x=60
</math>
 
<math>
x=12
x=12
</math>
</math>
Line 55: Line 76:


<math>
<math>
-3x=60-2x,
-3x=60-2x
-x=60,
</math>
 
<math>
-x=60
</math>
 
<math>
x=-60
x=-60
</math>
</math>


Since an absolute value cannot be negative, we exclude <math>x=-60</math>. The answer is <math>20+60+12= \boxed{\mathrm {(C)}\ 92}</math>
Since an absolute value cannot be negative, we exclude <math>x=-60</math>. The answer is <math>20+60+12= \boxed{\mathrm {(C)}\ 92}</math>

Revision as of 20:23, 24 January 2011

Problem

What is the sum of all the solutions of $x = \left|2x-|60-2x|\right|$?

$\mathrm{(A)}\ 32 \qquad \mathrm{(B)}\ 60 \qquad \mathrm{(C)}\ 92 \qquad \mathrm{(D)}\ 120 \qquad \mathrm{(E)}\ 124$

Solution

Case 1:

$2x-|60-2x|=x$

$x=|60-2x|$

Case 1a:

$x=60-2x$

$3x=60$

$x=20$

Case 1b:

$-x=60-2x$

$x=60$

Case 2:

$2x-|60-2x|=-x$

$3x=|60-2x|$

Case 2a:

$3x=60-2x$

$5x=60$

$x=12$

Case 2b:

$-3x=60-2x$

$-x=60$

$x=-60$

Since an absolute value cannot be negative, we exclude $x=-60$. The answer is $20+60+12= \boxed{\mathrm {(C)}\ 92}$