2010 AMC 10B Problems/Problem 13: Difference between revisions
| Line 18: | Line 18: | ||
<math> | <math> | ||
2x-|60-2x|=x | 2x-|60-2x|=x | ||
</math> | |||
<math> | |||
x=|60-2x| | x=|60-2x| | ||
</math> | </math> | ||
| Line 25: | Line 28: | ||
<math> | <math> | ||
x=60-2x | x=60-2x | ||
3x=60 | </math> | ||
<math> | |||
3x=60 | |||
</math> | |||
<math> | |||
x=20 | x=20 | ||
</math> | </math> | ||
| Line 33: | Line 42: | ||
<math> | <math> | ||
-x=60-2x | -x=60-2x | ||
</math> | |||
<math> | |||
x=60 | x=60 | ||
</math> | </math> | ||
| Line 40: | Line 52: | ||
<math> | <math> | ||
2x-|60-2x|=-x | 2x-|60-2x|=-x | ||
</math> | |||
<math> | |||
3x=|60-2x| | 3x=|60-2x| | ||
</math> | </math> | ||
| Line 47: | Line 62: | ||
<math> | <math> | ||
3x=60-2x | 3x=60-2x | ||
5x=60 | </math> | ||
<math> | |||
5x=60 | |||
</math> | |||
<math> | |||
x=12 | x=12 | ||
</math> | </math> | ||
| Line 55: | Line 76: | ||
<math> | <math> | ||
-3x=60-2x | -3x=60-2x | ||
-x=60 | </math> | ||
<math> | |||
-x=60 | |||
</math> | |||
<math> | |||
x=-60 | x=-60 | ||
</math> | </math> | ||
Since an absolute value cannot be negative, we exclude <math>x=-60</math>. The answer is <math>20+60+12= \boxed{\mathrm {(C)}\ 92}</math> | Since an absolute value cannot be negative, we exclude <math>x=-60</math>. The answer is <math>20+60+12= \boxed{\mathrm {(C)}\ 92}</math> | ||
Revision as of 20:23, 24 January 2011
Problem
What is the sum of all the solutions of
?
Solution
Case 1:
Case 1a:
Case 1b:
Case 2:
Case 2a:
Case 2b:
Since an absolute value cannot be negative, we exclude
. The answer is