Art of Problem Solving

2010 AMC 10B Problems/Problem 13: Difference between revisions

Jexmudder (talk | contribs)
Jexmudder (talk | contribs)
Line 16: Line 16:
== Solution ==
== Solution ==
'''Case 1''':  
'''Case 1''':  
<math>
<math>
2x-|60-2x|=x
2x-|60-2x|=x
x=|60-2x|
x=|60-2x|
</math>
</math>
''Case 1a'':  
 
''Case 1a'':
<math>
<math>
x=60-2x
x=60-2x
Line 26: Line 29:
x=20
x=20
</math>
</math>
''Case 1b'':
''Case 1b'':
<math>
<math>
-x=60-2x
-x=60-2x
x=60
x=60
</math>
</math>
'''Case 2''':  
'''Case 2''':  
<math>
<math>
2x-|60-2x|=-x
2x-|60-2x|=-x
3x=|60-2x|
3x=|60-2x|
</math>
</math>
''Case 2a'':
''Case 2a'':
<math>
3x=60-2x
3x=60-2x
5x=60
5x=60
x=12
x=12
</math>
''Case 2b'':
<math>
<math>
''Case 2b'':
</math>
-3x=60-2x
-3x=60-2x
-x=60
-x=60
x=-60
x=-60
<math>
</math>


Since an absolute value cannot be negative, we exclude </math>x=-60<math>. The answer is </math>20+60+12=92$
Since an absolute value cannot be negative, we exclude <math>x=-60</math>. The answer is <math>20+60+12=92</math>

Revision as of 20:13, 24 January 2011

Problem

What is the sum of all the solutions of $x = \left|2x-|60-2x|\right|$?

$\mathrm{(A)}\ 32 \qquad \mathrm{(B)}\ 60 \qquad \mathrm{(C)}\ 92 \qquad \mathrm{(D)}\ 120 \qquad \mathrm{(E)}\ 124$

Solution

Case 1:

$2x-|60-2x|=x x=|60-2x|$

Case 1a:

$x=60-2x 3x=60 x=20$

Case 1b:

$-x=60-2x x=60$

Case 2:

$2x-|60-2x|=-x 3x=|60-2x|$

Case 2a:

$3x=60-2x 5x=60 x=12$

Case 2b:

$-3x=60-2x -x=60 x=-60$

Since an absolute value cannot be negative, we exclude $x=-60$. The answer is $20+60+12=92$