Art of Problem Solving

Minkowski Inequality: Difference between revisions

I like pie (talk | contribs)
mNo edit summary
Line 3: Line 3:


Notice that if either <math>r</math> or <math>s</math> is zero, the inequality is equivalent to [[Holder's Inequality]].
Notice that if either <math>r</math> or <math>s</math> is zero, the inequality is equivalent to [[Holder's Inequality]].
== Equivalence with the standard form ==
For <math>r>s>0</math>, putting <math>x_{ij}:=a_{ij}^s</math> and <math>p:=\frac rs>1</math>, the above
<math>\left(\sum_{j=1}^{m}\biggl(\sum_{i=1}^{n}a_{ij}^{r}\biggr)^{s/r}\right)^{1/s} \geq\left(\sum_{i=1}^{n}\biggl(\sum_{j=1}^{m}a_{ij}^{s}\biggr)^{r/s}\right)^{1/r}</math>
becomes
<math> \sum_{j=1}^{m}\biggl(\sum_{i=1}^{n}x_{ij}^p\biggr)^{1/p}
\geq\left(\sum_{i=1}^{n}\biggl(\sum_{j=1}^{m}x_{ij}\biggr)^p\right)^{1/p}</math>.
Put <math>m=2, a_i:=x_{i1},b_i:=x_{i2}</math> and we get the form in which the Minkowski Inequality is given most often:
<math>\biggl(\sum_{i=1}^{n}a_i^p\biggr)^{1/p}+ \biggl(\sum_{i=1}^{n}b_i^p\biggr)^{1/p}
\geq\left(\sum_{i=1}^{n}\biggl(a_i+b_i\biggr)^p\right)^{1/p}</math>
As the latter can be iterated, there is no loss of generality by putting <math>m=2</math> .


== Problems ==
== Problems ==

Revision as of 12:56, 12 November 2010

The Minkowski Inequality states that if $r>s$ is a nonzero real number, then for any positive numbers $a_{ij}$, the following holds: $\left(\sum_{j=1}^{m}\left(\sum_{i=1}^{n}a_{ij}^r\right)^{s/r}\right)^{1/s}\geq \left(\sum_{i=1}^{n}\left(\sum_{j=1}^{m}a_{ij}^s\right)^{r/s}\right)^{1/r}$

Notice that if either $r$ or $s$ is zero, the inequality is equivalent to Holder's Inequality.

Equivalence with the standard form

For $r>s>0$, putting $x_{ij}:=a_{ij}^s$ and $p:=\frac rs>1$, the above

$\left(\sum_{j=1}^{m}\biggl(\sum_{i=1}^{n}a_{ij}^{r}\biggr)^{s/r}\right)^{1/s} \geq\left(\sum_{i=1}^{n}\biggl(\sum_{j=1}^{m}a_{ij}^{s}\biggr)^{r/s}\right)^{1/r}$

becomes

$\sum_{j=1}^{m}\biggl(\sum_{i=1}^{n}x_{ij}^p\biggr)^{1/p} \geq\left(\sum_{i=1}^{n}\biggl(\sum_{j=1}^{m}x_{ij}\biggr)^p\right)^{1/p}$.

Put $m=2, a_i:=x_{i1},b_i:=x_{i2}$ and we get the form in which the Minkowski Inequality is given most often:

$\biggl(\sum_{i=1}^{n}a_i^p\biggr)^{1/p}+ \biggl(\sum_{i=1}^{n}b_i^p\biggr)^{1/p} \geq\left(\sum_{i=1}^{n}\biggl(a_i+b_i\biggr)^p\right)^{1/p}$

As the latter can be iterated, there is no loss of generality by putting $m=2$ .

Problems

This article is a stub. Help us out by expanding it.