1993 USAMO Problems/Problem 2: Difference between revisions
Created page with '==Problem 2== Let <math>ABCD</math> be a convex quadrilateral such that diagonals <math>AC</math> and <math>BD</math> intersect at right angles, and let <math>E</math> be their …' |
|||
| Line 43: | Line 43: | ||
===Work=== | ===Work=== | ||
Let <math>X</math>, <math>Y</math>, <math>Z</math>, <math>W</math> be the foot of the altitute from point E of <math>\triangle AEB</math>, <math>\triangle BEC</math>, <math>\triangle CED</math>, <math>\triangle DEA</math>. | Let <math>X</math>, <math>Y</math>, <math>Z</math>, <math>W</math> be the foot of the altitute from point <math>E</math> of <math>\triangle AEB</math>, <math>\triangle BEC</math>, <math>\triangle CED</math>, <math>\triangle DEA</math>. | ||
Note that reflection of <math>E</math> over the 4 lines is <math>XYZW</math> with a scale of <math>2</math> with center <math>E</math>. Thus, if <math>XYZW</math> is cyclic, then the reflections are cyclic. | Note that reflection of <math>E</math> over the 4 lines is <math>XYZW</math> with a scale of <math>2</math> with center <math>E</math>. Thus, if <math>XYZW</math> is cyclic, then the reflections are cyclic. | ||
| Line 56: | Line 56: | ||
<br/>Futhermore, <math>m\angle XYZ+m\angle XWZ= m\angle EWX+m\angle EYX+m\angle EYZ+m\angle EWZ=360^\circ-m\angle CED-m\angle AEB=180^\circ</math>. | <br/>Futhermore, <math>m\angle XYZ+m\angle XWZ= m\angle EWX+m\angle EYX+m\angle EYZ+m\angle EWZ=360^\circ-m\angle CED-m\angle AEB=180^\circ</math>. | ||
<br/> | |||
Thus, <math>\angle XYZ</math> and <math>\angle XWZ</math> are supplementary and follows that, <math>XYZW</math> is cyclic. | Thus, <math>\angle XYZ</math> and <math>\angle XWZ</math> are supplementary and follows that, <math>XYZW</math> is cyclic. | ||
Revision as of 22:08, 22 April 2010
Problem 2
Let
be a convex quadrilateral such that diagonals
and
intersect at right angles, and let
be their intersection. Prove that the reflections of
across
,
,
,
are concyclic.
Solution
Diagram
![]() |
Work
Let
,
,
,
be the foot of the altitute from point
of
,
,
,
.
Note that reflection of
over the 4 lines is
with a scale of
with center
. Thus, if
is cyclic, then the reflections are cyclic.
is right angle and so is
. Thus,
is cyclic with
being the diameter of the circumcircle.
Follow that,
because they inscribe the same angle.
Similarly
,
,
.
Futhermore,
.
Thus,
and
are supplementary and follows that,
is cyclic.
![]()
Resources
| 1993 USAMO (Problems • Resources) | ||
| Preceded by Problem 3 |
Followed by Problem 5 | |
| 1 • 2 • 3 • 4 • 5 | ||
| All USAMO Problems and Solutions | ||
![[asy] import olympiad; defaultpen(0.8pt+fontsize(12pt)); pair E; E=(0,0); label('$E$',E,N); pair A,B,C,D; A=(10,0); B=(0,13); C=(-13,0); D=(0,-11); draw(A--B--C--D--cycle,blue); label('$A$',A,E); label('$B$',B,N); label('$C$',C,W); label('$D$',D,S); pair T,R,S,Q; T=reflect(A, B)*E; R=reflect(C, B)*E; S=reflect(C, D)*E; Q=reflect(A, D)*E; pair W,X,Y,Z; W=extension(A,D,E,Q); X=extension(A,B,E,T); Y=extension(C,B,E,R); Z=extension(C,D,E,S); draw(W--X--Y--Z--cycle,red); label('$X$',X,NE); label('$Y$',Y,NW); label('$Z$',Z, SW); label('$W$',W,SE); [/asy]](http://latex.artofproblemsolving.com/3/b/1/3b151545092b3a4ff38f44b608ec7540ae71e0a5.png)