Art of Problem Solving

1985 AJHSME Problems/Problem 24: Difference between revisions

5849206328x (talk | contribs)
New page: ==Problem== In a magic triangle, each of the six whole numbers <math>10-15</math> is placed in one of the circles so that the sum, <math>S</math>, of the three numbers on each side of the...
 
5849206328x (talk | contribs)
mNo edit summary
Line 1: Line 1:
==Problem==
==Problem==


In a magic triangle, each of the six whole numbers <math>10-15</math> is placed in one of the circles so that the sum, <math>S</math>, of the three numbers on each side of the triangle is the same.  The largest possible value for <math>S</math> is
In a magic triangle, each of the six [[whole number|whole numbers]] <math>10-15</math> is placed in one of the [[circle|circles]] so that the sum, <math>S</math>, of the three numbers on each side of the [[triangle]] is the same.  The largest possible value for <math>S</math> is


<asy>
<asy>
Line 24: Line 24:
Let the number in the top circle be <math>a</math> and then <math>b</math>, <math>c</math>, <math>d</math>, <math>e</math>, and <math>f</math>, going in clockwise order. Then, we have <cmath>S=a+b+c</cmath> <cmath>S=c+d+e</cmath> <cmath>S=e+f+a</cmath>  
Let the number in the top circle be <math>a</math> and then <math>b</math>, <math>c</math>, <math>d</math>, <math>e</math>, and <math>f</math>, going in clockwise order. Then, we have <cmath>S=a+b+c</cmath> <cmath>S=c+d+e</cmath> <cmath>S=e+f+a</cmath>  


Adding these equations together, we get  
Adding these [[equation|equations]] together, we get  


<cmath>\begin{align*}
<cmath>\begin{align*}
Line 31: Line 31:
\end{align*}</cmath>
\end{align*}</cmath>


where the last step comes from the fact that since <math>a</math>, <math>b</math>, <math>c</math>, <math>d</math>, <math>e</math>, and <math>f</math> are the numbers <math>10-15</math> in some order, their sum is <math>10+11+12+13+14+15=75</math>
where the last step comes from the fact that since <math>a</math>, <math>b</math>, <math>c</math>, <math>d</math>, <math>e</math>, and <math>f</math> are the numbers <math>10-15</math> in some order, their [[sum]] is <math>10+11+12+13+14+15=75</math>


The left hand side is divisible by <math>3</math> and <math>75</math> is divisible by <math>3</math>, so <math>a+c+e</math> must be divisible by <math>3</math>.  The largest possible value of <math>a+c+e</math> is then <math>15+14+13=42</math>, and the corresponding value of <math>S</math> is <math>\frac{75+42}{3}=39</math>, which is choice <math>\boxed{\text{D}}</math>.  
The left hand side is [[divisible]] by <math>3</math> and <math>75</math> is divisible by <math>3</math>, so <math>a+c+e</math> must be divisible by <math>3</math>.  The largest possible value of <math>a+c+e</math> is then <math>15+14+13=42</math>, and the corresponding value of <math>S</math> is <math>\frac{75+42}{3}=39</math>, which is choice <math>\boxed{\text{D}}</math>.  


It turns out this sum is attainable if you let <cmath>a=15</cmath> <cmath>b=10</cmath> <cmath>c=14</cmath> <cmath>d=12</cmath> <cmath>e=13</cmath> <cmath>f=11</cmath>
It turns out this sum is attainable if you let <cmath>a=15</cmath> <cmath>b=10</cmath> <cmath>c=14</cmath> <cmath>d=12</cmath> <cmath>e=13</cmath> <cmath>f=11</cmath>
Line 39: Line 39:
==See Also==
==See Also==


[[1985 AJHSME Problems]]
{{AJHSME box|year=1985|num-b=23|num-a=25}}
[[Category:Introductory Number Theory Problems]]
[[Category:Introductory Algebra Problems]]

Revision as of 16:46, 18 May 2009

Problem

In a magic triangle, each of the six whole numbers $10-15$ is placed in one of the circles so that the sum, $S$, of the three numbers on each side of the triangle is the same. The largest possible value for $S$ is

[asy] draw(circle((0,0),1)); draw(dir(60)--6*dir(60)); draw(circle(7*dir(60),1)); draw(8*dir(60)--13*dir(60)); draw(circle(14*dir(60),1)); draw((1,0)--(6,0)); draw(circle((7,0),1)); draw((8,0)--(13,0)); draw(circle((14,0),1)); draw(circle((10.5,6.0621778264910705273460621952706),1)); draw((13.5,0.86602540378443864676372317075294)--(11,5.1961524227066318805823390245176)); draw((10,6.9282032302755091741097853660235)--(7.5,11.258330249197702407928401219788)); [/asy]

$\text{(A)}\ 36 \qquad \text{(B)}\ 37 \qquad \text{(C)}\ 38 \qquad \text{(D)}\ 39 \qquad \text{(E)}\ 40$

Solution

Let the number in the top circle be $a$ and then $b$, $c$, $d$, $e$, and $f$, going in clockwise order. Then, we have \[S=a+b+c\] \[S=c+d+e\] \[S=e+f+a\]

Adding these equations together, we get

\begin{align*} 3S &= (a+b+c+d+e+f)+(a+c+e) \\ &= 75+(a+c+e) \\ \end{align*}

where the last step comes from the fact that since $a$, $b$, $c$, $d$, $e$, and $f$ are the numbers $10-15$ in some order, their sum is $10+11+12+13+14+15=75$

The left hand side is divisible by $3$ and $75$ is divisible by $3$, so $a+c+e$ must be divisible by $3$. The largest possible value of $a+c+e$ is then $15+14+13=42$, and the corresponding value of $S$ is $\frac{75+42}{3}=39$, which is choice $\boxed{\text{D}}$.

It turns out this sum is attainable if you let \[a=15\] \[b=10\] \[c=14\] \[d=12\] \[e=13\] \[f=11\]

See Also

1985 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions