2000 AMC 12 Problems/Problem 20: Difference between revisions
No edit summary |
No edit summary |
||
| Line 18: | Line 18: | ||
(4)(1)\left(\frac 73\right) &= 4 + 1 + \frac 73 + xyz + \frac 1{xyz}\\ | (4)(1)\left(\frac 73\right) &= 4 + 1 + \frac 73 + xyz + \frac 1{xyz}\\ | ||
2 &= xyz + \frac 1{xyz}\\ | 2 &= xyz + \frac 1{xyz}\\ | ||
(xyz - 1)^2 | 0 &= (xyz - 1)^2 | ||
\end{align*}</cmath> | \end{align*}</cmath> | ||
Revision as of 23:35, 16 May 2009
Problem
If
and
are positive numbers satisfying
Then what is the value of
?
Solution
Solution 1
Multiplying all three expressions together,
Thus
Solution 2
We have a system of three equations and three variables, so we can apply repeated substitution.
Multiplying out the denominator and simplification yields
, so
. Substituting leads to
, and the product of these three variables is
.
See also
| 2000 AMC 12 (Problems • Answer Key • Resources) | |
| Preceded by Problem 19 |
Followed by Problem 21 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |