1999 AHSME Problems/Problem 19: Difference between revisions
solution |
5849206328x (talk | contribs) m →Problem |
||
| Line 2: | Line 2: | ||
Consider all [[triangle]]s <math>ABC</math> satisfying in the following conditions: <math>AB = AC</math>, <math>D</math> is a point on <math>\overline{AC}</math> for which <math>\overline{BD} \perp \overline{AC}</math>, <math>AC</math> and <math>CD</math> are integers, and <math>BD^{2} = 57</math>. Among all such triangles, the smallest possible value of <math>AC</math> is | Consider all [[triangle]]s <math>ABC</math> satisfying in the following conditions: <math>AB = AC</math>, <math>D</math> is a point on <math>\overline{AC}</math> for which <math>\overline{BD} \perp \overline{AC}</math>, <math>AC</math> and <math>CD</math> are integers, and <math>BD^{2} = 57</math>. Among all such triangles, the smallest possible value of <math>AC</math> is | ||
<asy> | |||
pair A,B,C,D; | |||
A=(5,12); B=origin; C=(10,0); D=(8.52071005917,3.55029585799); | |||
draw(A--B--C--cycle); draw(B--D); | |||
label("$A$",A,N); label("$B$",B,SW); label("$C$",C,SE); label("$D$",D,NE); | |||
</asy> | |||
<math>\textrm{(A)} \ 9 \qquad \textrm{(B)} \ 10 \qquad \textrm{(C)} \ 11 \qquad \textrm{(D)} \ 12 \qquad \textrm{(E)} \ 13</math> | <math>\textrm{(A)} \ 9 \qquad \textrm{(B)} \ 10 \qquad \textrm{(C)} \ 11 \qquad \textrm{(D)} \ 12 \qquad \textrm{(E)} \ 13</math> | ||
Revision as of 17:58, 20 April 2009
Problem
Consider all triangles
satisfying in the following conditions:
,
is a point on
for which
,
and
are integers, and
. Among all such triangles, the smallest possible value of
is
Solution
Thus
and
are integers. By the Pythagorean Theorem,
Thus
or
.
See also
| 1999 AHSME (Problems • Answer Key • Resources) | ||
| Preceded by Problem 18 |
Followed by Problem 20 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
| All AHSME Problems and Solutions | ||