Art of Problem Solving

2009 AMC 10A Problems/Problem 5: Difference between revisions

New page: ==Problem== What is the sum of the digits of the square of 111,111,111 ? <math>\mathrm{(A)}\ 18\qquad\mathrm{(B)}\ 27\qquad\mathrm{(C)}\ 45\qquad\mathrm{(D)}\ 63\qquad\mathrm{(E)}\ 81</ma...
 
No edit summary
Line 5: Line 5:


==Solution==
==Solution==
<math>\longrightarrow \fbox{E}</math>
Using the standard multiplication algorithm, <math>111111111^2=12345678987654321</math> whose digit sum is <math>81\longrightarrow \fbox{E}</math>


==See also==
==See also==
{{AMC10 box|year=2009|ab=A|num-b=4|num-a=6}}
{{AMC10 box|year=2009|ab=A|num-b=4|num-a=6}}

Revision as of 18:50, 18 February 2009

Problem

What is the sum of the digits of the square of 111,111,111 ?

$\mathrm{(A)}\ 18\qquad\mathrm{(B)}\ 27\qquad\mathrm{(C)}\ 45\qquad\mathrm{(D)}\ 63\qquad\mathrm{(E)}\ 81$

Solution

Using the standard multiplication algorithm, $111111111^2=12345678987654321$ whose digit sum is $81\longrightarrow \fbox{E}$

See also

2009 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions