1960 IMO Problems/Problem 3: Difference between revisions
No edit summary |
No edit summary |
||
| Line 7: | Line 7: | ||
== Solution == | == Solution == | ||
{{ | Using coordinates, let <math>A=(0,0)</math>, <math>B=(b,0)</math>, and <math>C=(0,c)</math>. Also, let <math>PQ</math> be the segment that subtends the midpoint of the hypotenuse with <math>P</math> closer to <math>B</math>. | ||
<asy> | |||
size(8cm); | |||
pair A,B,C,P,Q; | |||
A=(0,0); | |||
B=(4,0); | |||
C=(0,3); | |||
P=(2.08,1.44); | |||
Q=(1.92,1.56); | |||
dot(A); | |||
dot(B); | |||
dot(C); | |||
dot(P); | |||
dot(Q); | |||
label("A",A,SW); | |||
label("B",B,SE); | |||
label("C",C,NW); | |||
label("P",P,ENE); | |||
label("Q",Q,NNE); | |||
draw(A--B--C--cycle); | |||
draw(A--P); | |||
draw(A--Q); | |||
</asy> | |||
Then, <math>P = \frac{n+1}{2}B+\frac{n-1}{2}C = \left(\frac{n+1}{2}b,\frac{n-1}{2}c\right)</math>, and <math>Q = \frac{n-1}{2}B+\frac{n+1}{2}C = \left(\frac{n-1}{2}b,\frac{n+1}{2}c\right)</math>. | |||
So, <math>\text{slope}</math><math>(PA)=\tan{\angle PAB}=\frac{c}{b}\cdot\frac{n-1}{n+1}</math>, and <math>\text{slope}</math><math>(QA)=\tan{\angle QAB}=\frac{c}{b}\cdot\frac{n+1}{n-1}</math>. | |||
Thus, <math>\tan{\alpha} = \tan{(\angle QAB - \angle PAB)} = \frac{(\frac{c}{b}\cdot\frac{n+1}{n-1})-(\frac{c}{b}\cdot\frac{n-1}{n+1})}{1+(\frac{c}{b}\cdot\frac{n+1}{n-1})\cdot(\frac{c}{b}\cdot\frac{n-1}{n+1})}</math> | |||
<math>= \frac{\frac{c}{b}\cdot\frac{4n}{n^2-1}}{1+\frac{c^2}{b^2}} = \frac{4nbc}{(n^2-1)(b^2+c^2)}=\frac{4nbc}{(n^2-1)a^2}</math>. | |||
Since <math>[ABC]=\frac{1}{2}bc=\frac{1}{2}ah</math>, <math>bc=ah</math> and <math>\tan{\alpha}=\frac{4nh}{(n^2-1)a}</math> as desired. | |||
==See Also== | ==See Also== | ||
Revision as of 13:34, 25 June 2008
Problem
In a given right triangle
, the hypotenuse
, of length
, is divided into
equal parts (
and odd integer). Let
be the acute angle subtending, from
, that segment which contains the midpoint of the hypotenuse. Let
be the length of the altitude to the hypotenuse of the triangle. Prove that:
Solution
Using coordinates, let
,
, and
. Also, let
be the segment that subtends the midpoint of the hypotenuse with
closer to
.
Then,
, and
.
So, ![]()
, and ![]()
.
Thus,
.
Since
,
and
as desired.
See Also
| 1960 IMO (Problems) • Resources | ||
| Preceded by Problem 2 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 4 |
| All IMO Problems and Solutions | ||