Art of Problem Solving
During AMC 10A/12A testing, the AoPS Wiki is in read-only mode and no edits can be made.

2023 AMC 12B Problems/Problem 8: Difference between revisions

Scrabbler94 (talk | contribs)
MRENTHUSIASM (talk | contribs)
 
Line 4: Line 4:
<math>\textbf{(A) } 256 \qquad\textbf{(B) } 136 \qquad\textbf{(C) } 108 \qquad\textbf{(D) } 144 \qquad\textbf{(E) } 156</math>
<math>\textbf{(A) } 256 \qquad\textbf{(B) } 136 \qquad\textbf{(C) } 108 \qquad\textbf{(D) } 144 \qquad\textbf{(E) } 156</math>


==Solution 1==
==Solution==
There is no way to have a set with 0. If a set is to have its lowest element as 1, it must have only 1 element: 1. If a set is to have its lowest element as 2, it must have 2, and the other element will be chosen from the natural numbers between 3 and 12, inclusive. To calculate this, we do <math>\binom{10}{1}</math>. If the set is the have its lowest element as 3, the other 2 elements will be chosen from the natural numbers between 4 and 12, inclusive. To calculate this, we do <math>\binom{9}{2}</math>. We can see a pattern emerge, where the top is decreasing by 1 and the bottom is increasing by 1. In other words, we have to add <math>1 + \binom{10}{1} + \binom{9}{2} + \binom{8}{3} + \binom{7}{4} + \binom{6}{5}</math>. This is <math>1+10+36+56+35+6 = \boxed{\textbf{(D) 144}}</math>.
There is no way to have a set with 0. If a set is to have its lowest element as 1, it must have only 1 element: 1. If a set is to have its lowest element as 2, it must have 2, and the other element will be chosen from the natural numbers between 3 and 12, inclusive. To calculate this, we do <math>\binom{10}{1}</math>. If the set is the have its lowest element as 3, the other 2 elements will be chosen from the natural numbers between 4 and 12, inclusive. To calculate this, we do <math>\binom{9}{2}</math>. We can see a pattern emerge, where the top is decreasing by 1 and the bottom is increasing by 1. In other words, we have to add <math>1 + \binom{10}{1} + \binom{9}{2} + \binom{8}{3} + \binom{7}{4} + \binom{6}{5}</math>. This is <math>1+10+36+56+35+6 = \boxed{\textbf{(D) 144}}</math>.


~lprado
~lprado
==Note:==
==Note:==
In general, i.e. when the number is not <math>13</math>, the answer is <math>F_{n-1}</math>.
In general, i.e. when the number is not <math>13</math>, the answer is <math>F_{n-1}</math>.

Latest revision as of 10:08, 31 October 2025

Problem

How many nonempty subsets $B$ of $\{0, 1, 2, 3, \cdots, 12\}$ have the property that the number of elements in $B$ is equal to the least element of $B$? For example, $B = \{4, 6, 8, 11\}$ satisfies the condition.

$\textbf{(A) } 256 \qquad\textbf{(B) } 136 \qquad\textbf{(C) } 108 \qquad\textbf{(D) } 144 \qquad\textbf{(E) } 156$

Solution

There is no way to have a set with 0. If a set is to have its lowest element as 1, it must have only 1 element: 1. If a set is to have its lowest element as 2, it must have 2, and the other element will be chosen from the natural numbers between 3 and 12, inclusive. To calculate this, we do $\binom{10}{1}$. If the set is the have its lowest element as 3, the other 2 elements will be chosen from the natural numbers between 4 and 12, inclusive. To calculate this, we do $\binom{9}{2}$. We can see a pattern emerge, where the top is decreasing by 1 and the bottom is increasing by 1. In other words, we have to add $1 + \binom{10}{1} + \binom{9}{2} + \binom{8}{3} + \binom{7}{4} + \binom{6}{5}$. This is $1+10+36+56+35+6 = \boxed{\textbf{(D) 144}}$.

~lprado

Note:

In general, i.e. when the number is not $13$, the answer is $F_{n-1}$. -Mr Sharkman

Video Solution

https://youtu.be/r9HCzaxLNlc

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)


See Also

2023 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination