Art of Problem Solving
During AMC 10A/12A testing, the AoPS Wiki is in read-only mode and no edits can be made.

Parabola: Difference between revisions

Removed incomplete information that was incorrect without more data
Some equations dont work, YELP!
Line 3: Line 3:


== Parabola Equations ==
== Parabola Equations ==
There are several "standard" ways to write the equation of a parabola. The first is polynomial form: y = ax^2+bx+c where a, b, and c are constants. The second is completed square form, or <math>y=a(x-k)^2+c</math> where a, k, and c are constants. The third way is the conic section form, or y^2=4px or <math>x^2=4py</math> where the p is a constant, and is the distance from the focus to the directrix.

Revision as of 12:02, 18 June 2006

A parabola is a type of conic section. A parabola is a locus of points that are equidistant from a point (the vertex) and a line (the directrix).


Parabola Equations

There are several "standard" ways to write the equation of a parabola. The first is polynomial form: y = ax^2+bx+c where a, b, and c are constants. The second is completed square form, or $y=a(x-k)^2+c$ where a, k, and c are constants. The third way is the conic section form, or y^2=4px or $x^2=4py$ where the p is a constant, and is the distance from the focus to the directrix.