2023 WSMO Accuracy Round Problems/Problem 6: Difference between revisions
No edit summary |
No edit summary |
||
| Line 51: | Line 51: | ||
\angle(AXB) &= 180-\angle(AXD)\\ | \angle(AXB) &= 180-\angle(AXD)\\ | ||
&= 180-(180-\angle(XAD)-\angle(XDA))\\ | &= 180-(180-\angle(XAD)-\angle(XDA))\\ | ||
&= \angle(XAD)+\angle(XDA) | &= \angle(XAD)+\angle(XDA)\\ | ||
&= \angle(CAD)+\angle(BDA)\\ | &= \angle(CAD)+\angle(BDA)\\ | ||
&= \frac{\overparen{CD}}{2}+\frac{\overparen{AB}}{2}\\ | &= \frac{\overparen{CD}}{2}+\frac{\overparen{AB}}{2}\\ | ||
Revision as of 12:39, 13 September 2025
Problem
In quadrilateral
there exists a point
such that
and
Let
be the foot of the perpendiculars from
to
to
to
and
to
If
find
Solution
The existence of point
implies that
is a cyclic quadrilateral. Now, we have
\begin{align*}
\angle(AXB) &= 180-\angle(AXD)\\
&= 180-(180-\angle(XAD)-\angle(XDA))\\
&= \angle(XAD)+\angle(XDA)\\
&= \angle(CAD)+\angle(BDA)\\
&= \frac{\overparen{CD}}{2}+\frac{\overparen{AB}}{2}\\
&= \frac{\angle(COD)}{2}+\frac{\angle(AOB)}{2}\\
&= \frac{120}{2} = 60^{\circ}.
\end{align*} (Error compiling LaTeX. Unknown error_msg)
So,
In the same manner, we have
We have