2023 WSMO Accuracy Round Problems/Problem 6: Difference between revisions
Created page with "==Problem== In quadrilateral <math>ABCD,</math> there exists a point <math>O</math> such that <math>AO = BO = CO = DO</math> and <math>\angle(AOB)+\angle(COD) = 120^{\circ}.<..." |
No edit summary |
||
| Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
<asy> | |||
import geometry; | |||
unitsize(5cm); | |||
pair a = dir(110); | |||
pair b = dir(160); | |||
pair c = dir(310); | |||
pair d = dir(20); | |||
pair x = intersectionpoint(a--c,b--d); | |||
pair k = foot(a,b,d); | |||
pair l = foot(b,a,c); | |||
pair m = foot(c,b,d); | |||
pair n = foot(d,a,c); | |||
draw(a--c); | |||
draw(b--d); | |||
draw(a--k,dotted+red); | |||
draw(b--l,dotted+red); | |||
draw(c--m,dotted+red); | |||
draw(d--n,dotted+red); | |||
label("$A$",a,N); | |||
label("$B$",b,W); | |||
label("$C$",c,SE); | |||
label("$D$",d,E); | |||
label("$X$",x,NE); | |||
label("$K$",k,SW); | |||
label("$L$",l,NE); | |||
label("$M$",m,NE); | |||
label("$N$",n,SW); | |||
draw(rightanglemark(a,k,b,2),dotted); | |||
draw(rightanglemark(b,l,a,2),dotted); | |||
draw(rightanglemark(c,m,d,2),dotted); | |||
draw(rightanglemark(d,n,c,2),dotted); | |||
draw(Circle((0,0), 1),black); | |||
draw(a--b--c--d--cycle,blue); | |||
draw(k--l--m--n--cycle,green); | |||
</asy> | |||
Revision as of 12:26, 13 September 2025
Problem
In quadrilateral
there exists a point
such that
and
Let
be the foot of the perpendiculars from
to
to
to
and
to
If
find
Solution