2024 SSMO Tiebreaker Round Problems/Problem 3: Difference between revisions
No edit summary |
No edit summary |
||
| Line 26: | Line 26: | ||
Now, we will approximate this value. The first summation approximates to | Now, we will approximate this value. The first summation approximates to | ||
\begin{array}{ | \begin{array}{ccccccccccccc} | ||
& 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & . & 0 \\ | & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & . & 0 \\ | ||
& 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & . & 0 \\ | & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & . & 0 \\ | ||
| Line 43: | Line 43: | ||
Multiplying by <math>\frac{11}{10},</math> we have | Multiplying by <math>\frac{11}{10},</math> we have | ||
\begin{array}{ | \begin{array}{cccccccccccccc} | ||
& 6 & 1 & 7 & 2 & 8 & 3 & 9 & 5 & 0 & 5 & . & 5 & 0 \\ | & 6 & 1 & 7 & 2 & 8 & 3 & 9 & 5 & 0 & 5 & . & 5 & 0 \\ | ||
& 6 & 7 & 9 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & . & 0 & 5 \\ | & 6 & 7 & 9 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & . & 0 & 5 \\ | ||
Revision as of 13:50, 10 September 2025
Problem
Let
be a terminating decimal. The length of
is defined to be the length of the shortest sub-sequence of consecutive digits that include all nonzero digits and at least one of
So, the length of
is
and the length of
is
Let
be the average of all numbers with a terminating decimal of length
Find the value of
Solution
\sol First, we will compute the value of
Denote
as the expected value of a terminating decimal of length
with leading term
We have
So,
Now,
\begin{align*}
f(n,i)&=\mathbb{E}\left(a_ia_{i-1}\dots a_0.a_{-1}\dots a_{i+1-n}\right)\\
&=\mathbb{E}\left(\sum_{k=i+1-n}^{i}a_k10^k\right)\\
&=\sum_{k=i+1-n}^i\mathbb{E}\left(a_k10^k\right)\\
&=\sum_{k=i+1-n}^i10^k\mathbb{E}\left(a_k\right)\\
&=10^i\mathbb{E}(a_i)+\sum_{k=i+1-n}^{i-1}10^k\mathbb{E}\left(a_k\right)\\
&=10^i\left(\frac{\sum_{k=1}^{9}k}{9}\right)+\sum_{k=i+1-n}^{i-1}10^k\mathbb{E}\left(\frac{\sum_{k=0}^{9}k}{10}\right)\\
&=5\cdot10^i+\sum_{k=i+1-n}^{i-1}\left(4.5\cdot10^k\right).
\end{align*}
Substituting, we have
\begin{align*}
\sum_{n=1}^{10}(n+1)f(n)&=\sum_{n=1}^{10}\sum_{i=-1}^{n-1}f(n,i)\\
&=\sum_{n=1}^{10}\sum_{i=-1}^{n-1}\left(5\cdot10^i+\sum_{k=i+1-n}^{i-1}\left(4.5\cdot10^k\right)\right)\\
&=\sum_{n=1}^{10}\sum_{i=-1}^{n-1}\left(5\cdot10^i\right)+\sum_{n=1}^{10}\sum_{i=-1}^{n-1}\sum_{k=i+1-n}^{i-1}\left(4.5\cdot10^k\right)\\
&=\left(\sum_{i=-1}^{9}\left((50-5i)\cdot10^i\right)-\frac{1}{2}\right)+\sum_{n=1}^{10}\sum_{i=-1}^{n-1}\left(4.5\cdot\left(\frac{10^{i}-10^{i+1-n}}{9}\right)\right)\\
&=\left(\sum_{i=-1}^{9}\left((50-5i)\cdot10^i\right)-\frac{1}{2}\right)+\frac{1}{10}\sum_{n=1}^{10}\sum_{i=-1}^{n-1}\left(5\cdot10^i\right)-\sum_{n=1}^{10}\sum_{i=-1}^{n-1}\left(\frac{10^{i+1-n}}{2}\right)\\
&=\left(\sum_{i=-1}^{9}\left((50-5i)\cdot10^i\right)-\frac{1}{2}\right)+\frac{1}{10}\left(\sum_{i=-1}^{9}\left((50-5i)\cdot10^i\right)-\frac{1}{2}\right)\\&-\left(\sum_{i=-10}^{0}\left(\frac{(i+11)\cdot10^{i}}{2}\right)+\frac{1}{2}\right)\\
&=\frac{11}{10}\left(\sum_{i=-1}^{9}\left((50-5i)\cdot10^i\right)\right)-\sum_{i=-10}^{0}\left(\frac{(i+11)\cdot10^{i}}{2}\right)-\frac{21}{20}.\\
\end{align*}
Now, we will approximate this value. The first summation approximates to
\begin{array}{ccccccccccccc}
& 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & . & 0 \\ & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & . & 0 \\ & & 1 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & . & 0 \\ & & & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & . & 0 \\ & & & & 2 & 5 & 0 & 0 & 0 & 0 & 0 & . & 0 \\ & & & & & 3 & 0 & 0 & 0 & 0 & 0 & . & 0 \\ & & & & & & 3 & 5 & 0 & 0 & 0 & . & 0 \\ & & & & & & & 4 & 0 & 0 & 0 & . & 0 \\ & & & & & & & & 4 & 5 & 0 & . & 0 \\
+ & & & & & & & & & 5 & 0 & . & 0 \\ \hline
& 6 & 1 & 7 & 2 & 8 & 3 & 9 & 5 & 0 & 5 & . & 5 \\
\end{array}
Multiplying by
we have
\begin{array}{cccccccccccccc}
& 6 & 1 & 7 & 2 & 8 & 3 & 9 & 5 & 0 & 5 & . & 5 & 0 \\ & 6 & 7 & 9 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & . & 0 & 5 \\
\hline + & 6 & 7 & 9 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & . & 0 & 5 \\ \end{array}
Now, the second summation is approximately
Combining, we can approximate the expression as ![]()
~SMO_Team