Art of Problem Solving
During AMC 10A/12A testing, the AoPS Wiki is in read-only mode and no edits can be made.

Multinomial Theorem: Difference between revisions

1=2 (talk | contribs)
No edit summary
1=2 (talk | contribs)
Line 16: Line 16:
is simplified by expanding it and combining like terms. How many terms are in the simplified expression?
is simplified by expanding it and combining like terms. How many terms are in the simplified expression?


<math> \mathrm{(A) \ } 6018\qquad \mathrm{(B) \ } 671,676\qquad \mathrm{(C) \ } 1,007,514</math><math>\mathrm{(D) \ } 1,008,016\qquad\mathrm{(E) \ }  2,015,028</math>
<math> \mathrm{(A) \ } 6018\qquad \mathrm{(B) \ } 671,676\qquad \mathrm{(C) \ } 1,007,514\qquad \mathrm{(D) \ } 1,008,016\qquad\mathrm{(E) \ }  2,015,028</math>


-([[2006_AMC_12A_Problems/Problem_24|2006 AMC 12A Problem 24]])
-([[2006_AMC_12A_Problems/Problem_24|2006 AMC 12A Problem 24]])
===Olympiad===
===Olympiad===



Revision as of 10:12, 29 April 2008

The multinomial theorem states that

$(a_1+a_2+\cdots+a_x)^n=\sum_{k_1,k_2,\cdots,k_x}\binom{n}{k_1,k_2,\cdots,k_x}a_1^{k_1}a_2^{k_2}\cdots a_x^{k_x}$

where

$\binom{n}{k_1,k_2,\cdots,k_x}=\dfrac{n!}{k_1!k_2!\cdots k_x!}$

Problems

Introductory

Intermediate

  • The expression

$(x+y+z)^{2006}+(x-y-z)^{2006}$

is simplified by expanding it and combining like terms. How many terms are in the simplified expression?

$\mathrm{(A) \ } 6018\qquad \mathrm{(B) \ } 671,676\qquad \mathrm{(C) \ } 1,007,514\qquad \mathrm{(D) \ } 1,008,016\qquad\mathrm{(E) \ }  2,015,028$

-(2006 AMC 12A Problem 24)

Olympiad

This article is a stub. Help us out by expanding it.