2024 AMC 12B Problems/Problem 19: Difference between revisions
Magnetoninja (talk | contribs) |
Add diagram for Solution 3 |
||
| Line 33: | Line 33: | ||
~[https://artofproblemsolving.com/wiki/index.php/User:Cyantist luckuso] | ~[https://artofproblemsolving.com/wiki/index.php/User:Cyantist luckuso] | ||
==Solution | ==Solution 2== | ||
From <math>\triangle ABC</math>'s side lengths of 14, we get | From <math>\triangle ABC</math>'s side lengths of 14, we get | ||
<cmath>OF = OC = OE = \frac{14\sqrt{3}}{3}.</cmath> | <cmath>OF = OC = OE = \frac{14\sqrt{3}}{3}.</cmath> | ||
| Line 63: | Line 63: | ||
==Solution 3 (No Trig Manipulations)== | ==Solution 3 (No Trig Manipulations)== | ||
<asy> | |||
// Modified Asymptote diagram with correct right angle mark and alpha label. | |||
import olympiad; | |||
defaultpen(fontsize(13)); | |||
size(200); | |||
// Circumradius R = 14*sqrt(3)/3 | |||
real R = 14*sqrt(3)/3; | |||
// Define original points with scaling | |||
pair O = (0,0); | |||
pair A = R * dir(225); | |||
pair B = R * dir(-15); | |||
pair C = R * dir(105); | |||
pair D = rotate(38.21, O) * A; | |||
pair E = rotate(38.21, O) * B; | |||
pair F = rotate(38.21, O) * C; | |||
// Point H: Foot of altitude from B to DE | |||
pair DE_vec = E - D; | |||
pair perp_DE = (DE_vec.y, -DE_vec.x); // Rotate -90 degrees | |||
perp_DE = perp_DE / length(perp_DE); // Unit vector | |||
pair H = B - (2*sqrt(3)) * perp_DE; // Corrected direction | |||
// Point M: Extend BH to M, BM = 13*sqrt(3)/3 | |||
pair BH_vec = H - B; | |||
pair BM_unit = BH_vec / length(BH_vec); // Unit vector along BH | |||
pair M = B + (13*sqrt(3)/3) * BM_unit; // BM = 13*sqrt(3)/3 | |||
// Point P: Midpoint of BE | |||
pair P = (B + E) / 2; | |||
// Draw original triangles and polygon | |||
draw(A--B--C--A, gray+0.4); | |||
draw(D--E--F--D, gray+0.4); | |||
draw(A--D--B--E--C--F--A, black+0.9); | |||
// Draw new dashed segments | |||
draw(B--H, black+0.7+dashed); | |||
draw(H--M, black+0.7+dashed); | |||
draw(O--M, black+0.7+dashed); | |||
draw(O--P, black+0.7+dashed); | |||
draw(P--E, black+0.7+dashed); | |||
draw(O--B, black+0.7+dashed); | |||
// Draw right angle marker at OMB | |||
draw(rightanglemark(B, M, O, 15)); // Right angle at M, size 15 | |||
// Draw dots and labels | |||
dot(O); | |||
dot("$O$", O, dir(180)); | |||
dot("$A$", A, dir(A)); | |||
dot("$B$", B, dir(B)); | |||
dot("$C$", C, dir(C)); | |||
dot("$D$", D, dir(D)); | |||
dot("$E$", E, dir(E)); | |||
dot("$F$", F, dir(F)); | |||
dot("$H$", H, dir(270)); | |||
dot("$M$", M, dir(90)); | |||
dot("$P$", P, dir(0)); | |||
// Label angle POB as alpha, to the right of O | |||
draw(anglemark(B, O, P, 50)); // Angle mark at O | |||
label("$\alpha$", O + (1.5, -.23), dir(0)); // Position to the right of O | |||
</asy> | |||
Let the circumcenter of the circle inscribing this polygon be <math>O</math>. The area of the equilateral triangle is <math>\frac{\sqrt{3}}{4}*196=49\sqrt{3}</math>. The area of one of the three smaller triangles, say <math>\triangle{DBE}</math> is <math>14\sqrt{3}</math>. Let <math>BH</math> be the altitude of <math>\triangle{DBE}</math>, so if we extend <math>BH</math> to point <math>M</math> where <math>MO\perp{BM}</math>, we get right triangle <math>\triangle{OMB}</math>. Note that the height <math>BH=2\sqrt{3}</math>, computed given the area and side length <math>14</math>, so <math>MB=BH+HB=2\sqrt{3}+\frac{7\sqrt{3}}{3}=\frac{13\sqrt{3}}{3}</math>. <math>OB=\frac{14\sqrt{3}}{3}</math> so Pythag gives <math>OM=\sqrt{OB^2-MB^2}=3</math>. This means that <math>HE=7-OM=4</math>, so Pythag gives <math>BE=2\sqrt{7}</math>. Let <math>\frac{\theta}{2}=\alpha</math> and the midpoint of <math>BE</math> be <math>P</math> so that <math>BP=PE=\sqrt{7}</math>, so that Pythag on <math>\triangle{OPE}</math> gives <math>OP=\sqrt{OE^2-PE^2}=\sqrt{\frac{175}{3}}</math>. Then <math>\tan{\alpha}=\frac{\sqrt{\frac{175}{3}}}{\sqrt{7}}=\frac{\sqrt{3}}{5}</math>. Then <math>\tan{2\alpha}=\tan{\theta}=\frac{\frac{2\sqrt{3}}{5}}{1-\frac{3}{25}}=\boxed{\frac{5\sqrt{3}}{11}}</math>. | Let the circumcenter of the circle inscribing this polygon be <math>O</math>. The area of the equilateral triangle is <math>\frac{\sqrt{3}}{4}*196=49\sqrt{3}</math>. The area of one of the three smaller triangles, say <math>\triangle{DBE}</math> is <math>14\sqrt{3}</math>. Let <math>BH</math> be the altitude of <math>\triangle{DBE}</math>, so if we extend <math>BH</math> to point <math>M</math> where <math>MO\perp{BM}</math>, we get right triangle <math>\triangle{OMB}</math>. Note that the height <math>BH=2\sqrt{3}</math>, computed given the area and side length <math>14</math>, so <math>MB=BH+HB=2\sqrt{3}+\frac{7\sqrt{3}}{3}=\frac{13\sqrt{3}}{3}</math>. <math>OB=\frac{14\sqrt{3}}{3}</math> so Pythag gives <math>OM=\sqrt{OB^2-MB^2}=3</math>. This means that <math>HE=7-OM=4</math>, so Pythag gives <math>BE=2\sqrt{7}</math>. Let <math>\frac{\theta}{2}=\alpha</math> and the midpoint of <math>BE</math> be <math>P</math> so that <math>BP=PE=\sqrt{7}</math>, so that Pythag on <math>\triangle{OPE}</math> gives <math>OP=\sqrt{OE^2-PE^2}=\sqrt{\frac{175}{3}}</math>. Then <math>\tan{\alpha}=\frac{\sqrt{\frac{175}{3}}}{\sqrt{7}}=\frac{\sqrt{3}}{5}</math>. Then <math>\tan{2\alpha}=\tan{\theta}=\frac{\frac{2\sqrt{3}}{5}}{1-\frac{3}{25}}=\boxed{\frac{5\sqrt{3}}{11}}</math>. | ||
Revision as of 20:22, 16 April 2025
Problem 19
Equilateral
with side length
is rotated about its center by angle
, where
, to form
. See the figure. The area of hexagon
is
. What is
?
Solution 1
Let O be circumcenter of the equilateral triangle
Easily get
is invalid given
,
Solution 2
From
's side lengths of 14, we get
We let
And
The answer would be
Which area
=
And area
=
So we have that
Which means
Now,
can be calculated using the addition identity, which gives the answer of
~mitsuihisashi14 ~luckuso (fixed Latex error )
Solution 3 (No Trig Manipulations)
Let the circumcenter of the circle inscribing this polygon be
. The area of the equilateral triangle is
. The area of one of the three smaller triangles, say
is
. Let
be the altitude of
, so if we extend
to point
where
, we get right triangle
. Note that the height
, computed given the area and side length
, so
.
so Pythag gives
. This means that
, so Pythag gives
. Let
and the midpoint of
be
so that
, so that Pythag on
gives
. Then
. Then
.
-Magnetoninja
Video Solution by SpreadTheMathLove
https://www.youtube.com/watch?v=akLlCXKtXnk
See also
| 2024 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 18 |
Followed by Problem 20 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination