2020 AMC 8 Problems/Problem 12: Difference between revisions
Niuniumaths (talk | contribs) |
|||
| Line 11: | Line 11: | ||
==Solution 3 (using answer choices and elimination)== | ==Solution 3 (using answer choices and elimination)== | ||
We can see that the answers <math>\textbf{(B)}</math> to <math>\textbf{(E)}</math> contain a factor of <math>11</math>, but there is no such factor of <math>11</math> in <math>5! \cdot 9!</math>. The factor 11 is in every answer choice | We can see that the answers <math>\textbf{(B)}</math> to <math>\textbf{(E)}</math> contain a factor of <math>11</math>, but there is no such factor of <math>11</math> in <math>5! \cdot 9!</math>. The factor 11 is in every answer choice except <math>\boxed{\textbf{(A) }10}</math>, so four of the possible answers are eliminated. Therefore, the answer must be <math>\boxed{\textbf{(A) }10}</math>. | ||
~edited by HW73 | ~edited by HW73 | ||
Revision as of 17:52, 29 December 2024
Problem
For a positive integer
, the factorial notation
represents the product of the integers from
to
. What value of
satisfies the following equation?
Solution 1
We have
, and
. Therefore, the equation becomes
, and so
. Cancelling the
s, it is clear that
.
Solution 2 (variant of Solution 1)
Since
, we obtain
, which becomes
and thus
. We therefore deduce
.
Solution 3 (using answer choices and elimination)
We can see that the answers
to
contain a factor of
, but there is no such factor of
in
. The factor 11 is in every answer choice except
, so four of the possible answers are eliminated. Therefore, the answer must be
.
~edited by HW73
Solution 4
We notice that
We know that
so we have
Isolating
we have
~mathboy282
Video Solution by NiuniuMaths (Easy to understand!)
https://www.youtube.com/watch?v=bHNrBwwUCMI
~NiuniuMaths
Video Solution by Math-X (First understand the problem!!!)
https://youtu.be/UnVo6jZ3Wnk?si=aiVOk6HkZErYYi6P&t=1568
~Math-X
Video Solution (🚀 Fast 🚀)
~Education, the Study of Everything
Video Solution by North America Math Contest Go Go Go
https://www.youtube.com/watch?v=mYs1-Nbr0Ec
~North America Math Contest Go Go Go
Video Solution by WhyMath
~savannahsolver
Video Solution
Video Solution by Interstigation
https://youtu.be/YnwkBZTv5Fw?t=504
~Interstigation
See also
| 2020 AMC 8 (Problems • Answer Key • Resources) | ||
| Preceded by Problem 11 |
Followed by Problem 13 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AJHSME/AMC 8 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing