2024 AMC 12B Problems/Problem 17: Difference between revisions
| Line 8: | Line 8: | ||
==Solution 1== | ==Solution 1== | ||
-10< | -10 <math>\leq</math> a, b <math>\leq</math> 10 , each of a,b has 21 choices | ||
Applying Vieta, | |||
<math>x_1 \cdot x_2 \cdot x_3 = -6</math> | |||
<math> x_1 + x_2+ x_2 = -a </math> | |||
<math> x_1 \cdot x_2 + x_1 \cdot x_3 + x_3 \cdot x_2 = b</math> | |||
Case: | Case: | ||
( | (1) <math> (x_1,x_2,x_3) </math> = (-1,-1,6) , b = 13 not valid | ||
( | (2) <math> (x_1,x_2,x_3) </math> = (-1,1,6) , b = -1, a=-6 valid | ||
( | (3) <math> (x_1,x_2,x_3) </math> = ( 1,2,-3) , b = -7, a=0 valid | ||
( | (4) <math> (x_1,x_2,x_3) </math> = (1,-2,3) , b = -7, a=2 valid | ||
( | (5) <math> (x_1,x_2,x_3) </math> = (-1,2,3) , b = 1, a=4 valid | ||
(6) <math> (x_1,x_2,x_3) </math> = (-1,-2,-3) , b = 11 invalid | |||
probability = <math>\frac{4}{21*20}</math> = <math>\boxed{\textbf{(C) }\frac{1}{105}}</math> | |||
~[https://artofproblemsolving.com/wiki/index.php/User:Cyantist luckuso] | ~[https://artofproblemsolving.com/wiki/index.php/User:Cyantist luckuso] | ||
==See also== | ==See also== | ||
{{AMC12 box|year=2024|ab=B|num-b=16|num-a=18}} | {{AMC12 box|year=2024|ab=B|num-b=16|num-a=18}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
Revision as of 22:18, 14 November 2024
Problem 17
Integers
and
are randomly chosen without replacement from the set of integers with absolute value not exceeding
. What is the probability that the polynomial
has
distinct integer roots?
.
Solution 1
-10
a, b
10 , each of a,b has 21 choices
Applying Vieta,
Case:
(1)
= (-1,-1,6) , b = 13 not valid
(2)
= (-1,1,6) , b = -1, a=-6 valid
(3)
= ( 1,2,-3) , b = -7, a=0 valid
(4)
= (1,-2,3) , b = -7, a=2 valid
(5)
= (-1,2,3) , b = 1, a=4 valid
(6)
= (-1,-2,-3) , b = 11 invalid
probability =
=
See also
| 2024 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 16 |
Followed by Problem 18 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination